
1
1

COE 405
Basic Concepts in VHDL

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

2-2

Outline

VHDL Objects
Variables vs. Signals
Signal Assignment
Signal Transaction & Event
Delta Delay
Transport and Inertial Delay
Sequential Placement of Transactions
Signal Attributes

2
2

2-3

VHDL Objects …

VHDL OBJECT : Something that can hold a value of a
given Data Type.
VHDL has 3 classes of objects
• CONSTANTS
• VARIABLES
• SIGNALS

Every object & expression must unambiguously
belong to one named Data Type
Every object must be Declared.

2-4

… VHDL Object …

Obj_Class <id_list> : Type/SubType [signal_kind] [:= expression];

≥ 1
identifier

(,)

C
o
n
s
t
a
n
t

V
a
r
i
a
b
l
e

S
i
g
n
a
l

BUS Register

Only for Signals

Default Initial Value
(not Optional for Constant

Declarations)

Syntax

F

i

l

e

3
3

2-5

… VHDL Object …

Value of Constants must be specified when declared
Initial values of Variables or Signals may be specified
when declared
If not explicitly specified, Initial values of Variables or
Signals default to the value of the Left Element in the
type range specified in the declaration.
Examples:
• Constant Rom_Size : Integer := 2**16;
• Constant Address_Field : Integer := 7;
• Constant Ovfl_Msg : String (1 To 20) := ``Accumulator OverFlow``;
• Variable Busy, Active : Boolean := False;
• Variable Address : Bit_Vector (0 To Address_Field) :=

``00000000``;
• Signal Reset: Bit := `0`;

2-6

Variables vs. Signals

4
4

2-7

Signal Assignments …

Syntax:
Target Signal <= [Transport] Waveform ;
Waveform := Waveform_element {, Waveform_element }
Waveform_element := Value_Expression [After Time_Expression]

Examples:
• X <= ‘0’ ; -- Assignment executed After δ delay
• S <= ‘1’ After 10 ns;
• Q <= Transport ‘1’ After 10 ns;
• S <= ‘1’ After 5 ns, ‘0’ After 10 ns, ‘1’ After 15 ns;

Signal assignment statement
• mostly concurrent (within architecture bodies)
• can be sequential (within process body)

2-8

… Signal Assignments

Concurrent signal assignments are order independent
Sequential signal assignments are order dependent
Concurrent signal assignments are executed
• Once at the beginning of simulation
• Any time a signal on the right hand side changes

Time
Increases

5
5

2-9

Signal Transaction

When the time element of a signal transaction expires
(t=0)
• Its associated value is made the current value (CV) of a

signal
• The transaction is deleted from the list of transactions forming

the Projected Waveform (P_Wfm) of the signal

2-10

Signal Transaction & Event …

When a new value is assigned to a signal, it is said that
• a Transaction has been Scheduled for this signal
• or a Transaction has been placed on this Signal Driver

A Transaction which does not cause a signal transition
(Event) is still a Transaction
A Transaction May/May not cause a signal transition
(Event) on the target signal

6
6

2-11

… Signal Transaction & Event …

A <= ‘1’ After 10 ns, ‘0’ After 20 ns, ‘1’ After 30 ns;

(‘1’, 10ns)(‘0’, 10ns)
(‘1’, 20ns)

(‘1’, 5ns)
(‘0’, 15ns)
(‘1’, 25ns)

(‘1’, 10ns)
(‘0’, 20ns)
(‘1’, 30ns)

A
(P_Wfm)

‘1’‘0’‘1’‘0’‘0’A (CV)

t=30 nst=20 nst=10 nst=5 nst=0

2-12

… Signal Transaction & Event

ARCHITECTURE
demo OF example IS
SIGNAL a, b, c : BIT
:= '0';
BEGIN
a <= '1' AFTER 15
NS;
b <= NOT a AFTER

5 NS;
c <= a AFTER 10 NS;
END demo;

c
b

7
7

2-13

Scope of Signal Declarations

Signals declared within a Package are Global usable by
all Entities using this package
Signals declared within an Entity are usable by all
architectural bodies of this entity
Signals declared within an Architectural body are only
usable within this Architectural body

2-14

Delta Delay …

If no Time Delay is explicitly specified, Signal
assignment is executed after an infinitesimally small δ-
delay
• Delta is a simulation cycle , and not a real time
• Delta is used for scheduling
• A million deltas do not add to a femto second

ARCHITECTURE concurrent
OF timing_demo IS
SIGNAL a, b, c : BIT := '0';
BEGIN
a <= '1';
b <= NOT a;
c <= NOT b;
END concurrent;

8
8

2-15

… Delta Delay …

Entity example is
Port (a, b, c: IN bit; Z: OUT Bit);
End;
ARCHITECTURE
properly_timed OF example IS
SIGNAL w, x, y : BIT := '0';
BEGIN
y <= c AND w AFTER 12 ns;
w <= NOT a AFTER 12 ns;
x <= a AND b AFTER 12 ns;
z <= x OR y AFTER 12 NS;
END properly_timed;

2-16

… Delta Delay …

9
9

2-17

… Delta Delay …

ARCHITECTURE
not_properly_timed OF
example IS
SIGNAL w, x, y : BIT := '0';
BEGIN
y <= c AND w;
w <= NOT a;
x <= a AND b;
z <= x OR y AFTER 36 NS;
END not_properly_timed;

a changes from
1 to 0 at time 0.

2-18

Delta Delay in Sequential Signal
Assignments …

Effect of δ-delay should be carefully considered when
signal assignments are embedded within a process

Entity BUFF2 IS
Port (X: IN BIT;

Z: OUT BIT);
END BUFF2;

Architecture Wrong of BUFF2 IS
Signal y: BIT;
Begin

Process(x)
Begin

y <= x;
z <= y;

End Process;
End Wrong;

• Process activated on x-events only
• y x(δ)
• z y(0)

• z gets OLD value of y and not new
value of x

10
10

2-19

… Delta Delay in Sequential Signal
Assignments

Architecture OK of BUFF2 IS
Signal y: BIT;
Begin

Process(x,y)
Begin

y <= x;
z <= y;

End Process;
End OK;

• Process activated on both x and y
events

• x changes and process activated

• y x; -- y gets x value after δ

• z y; -- z gets y(0) value after δ

• Process terminated

• After δ, y changes and process
activated

• z gets new y (=x) after δ

• Process terminated

2-20

Oscillation in Zero Real Time

Architecture forever of
oscillating IS
Signal x: BIT :=‘0’;
Signal y: BIT :=‘1’;
Begin

x <= y;
y <= NOT x;

End forever;

Delta x y

+0 0 1

+1 1 1

+2 1 0

+3 0 0

+4 0 1

+5 1 1

+6 1 0

+7 0 0

+8 0 1

11
11

2-21

Signal Assignment & Delay Types
Two types of signal delay: Inertial and Transport
Transport Delay
• Exact delayed version of input signal no matter how short the input

stimulus
• Transport keyword must be used

• Example: S<= TRANSPORT waveform after 5 ns;
• Models delays through transmission lines and networks with

virtually infinite frequency response
Inertial Delay
• A delayed version of the input waveform
• Signal changes (Glitches) that do not persist for a specified duration

are missed
• Default delay type

• Example: S<= waveform after 5 ns;
• Models capacitive networks and represents hardware inertial delay
• Can have additional Reject specification

• Example: S<= REJECT 3 ns INERTIAL waveform after 5 ns;

2-22

Transport & Inertial Delay

ARCHITECTURE delay OF
example IS
SIGNAL target1, target2,
waveform : BIT;
-- this is a comment
BEGIN
-- the following illustrates
inertial delay
target1 <= waveform
AFTER 5 NS;
-- the following illustrates
transport delay
target2 <= TRANSPORT
waveform AFTER 5 NS;
END delay;

12
12

2-23

…Transport & Inertial Delay…

Entity example Is
End example;
Architecture ex1 of example is
SIGNAL a, b, c, wave : BIT;
BEGIN
a <= wave after 5 ns;
b <= REJECT 2 ns INERTIAL wave after 5 ns;
c <= transport wave after 5 ns;
wave <= '1' after 5 ns, '0' after 8 ns, '1' after 15
ns, '0' after 17 ns, '1' after 25 ns;
END ex1;

2-24

…Transport & Inertial Delay

13
13

2-25

Sequential Placement of Transactions

2-26

Sequential Placement of Transactions

Append new
transaction

New Transaction
is After Already
Existing

Overwrite
existing

transaction

Overwrite
existing

transaction

New Transaction
is Before
Already Existing

InertialTransport

Vnew /= Vold

Tnew-Told> Reject
Append new
transaction

Vnew /= Vold

Tnew-Told<= Reject
Overwrite existing

transaction

Vnew = Vold

Append new
transaction

Vnew /= Vold
Overwrite
existing

transaction

14
14

2-27

Example: Transport, New Transaction
Before Already Existing

ARCHITECTURE sequential OF
overwriting_old IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= '1' AFTER 5 NS;
x <= Transport '0' AFTER 3 NS;

WAIT;
END PROCESS;

END sequential;

Discards previous
transaction

2-28

Example: Transport, New Transaction
After Already Existing

ARCHITECTURE sequential OF
saving_all IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= '1' AFTER 5 NS;
x <= Transport '0' AFTER 8 NS;

WAIT;
END PROCESS;

END sequential;

Appends
transaction

15
15

2-29

Example: Inertial, New Transaction
Before Already Existing

ARCHITECTURE sequential OF
overwriting_old IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= '1' AFTER 5 NS;
x <= '0' AFTER 3 NS;

WAIT;
END PROCESS;

END sequential;

Discards previous
transaction

2-30

Example: Inertial, New Transaction
After Already Existing (Same Value)

ARCHITECTURE sequential OF
saving_all IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= ‘0' AFTER 5 NS;
x <= '0' AFTER 8 NS;

WAIT;
END PROCESS;

END sequential;

Saves previous
Transaction with
Same value

Z
0 1 2 3 4 5 6 7 8 9

x 0

16
16

2-31

Example: Inertial, New Transaction After
Already Existing (Different Value)

ARCHITECTURE sequential OF
discarding_old IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= ‘1' AFTER 5 NS;
x <= ‘0' AFTER 8 NS;

WAIT;
END PROCESS;

END sequential;

Discards old
value

2-32

Example: Inertial, New Transaction After
Already Existing (Diff. Value with Reject)

ARCHITECTURE sequential OF
appending IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= ‘1' AFTER 5 NS;
x <= Reject 2 ns Inertial ‘0' AFTER 8 NS;

WAIT;
END PROCESS;

END sequential;

•Time difference
between new and
existing transaction
is greater than reject
value
•Appends transaction

Z
0 1 2 3 4 5 6 7 8 9

x 01

17
17

2-33

Example: Inertial, New Transaction After
Already Existing (Diff. Value with Reject)

ARCHITECTURE sequential OF
appending IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= ‘1' AFTER 5 NS;
x <= Reject 4 ns Inertial ‘0' AFTER 8 NS;

WAIT;
END PROCESS;

END sequential;

•Time difference
between new and
existing transaction
is less than reject
value
•Discards old value

Z
0 1 2 3 4 5 6 7 8 9

x 0

2-34

Sequential Placement of Transactions

18
18

2-35

Sequential Placement of Transactions

2-36

Sequential Placement of Transactions

C(‘0’,5)

19
19

2-37

Sequential Placement of Transactions

2-38

Signal Attributes…

Attributes are named characteristics of an Object (or
Type) which has a value that can be referenced.
Signal Attributes
• S`Event -- Is TRUE if Signal S has changed.
• S`Stable(t) -- Is TRUE if Signal S has not changed for the

last ``t`` period. If t=0; it is written as S`Stable
• S`Last_Value -- Returns the previous value of S before the

last change.
• S`Active -- -- Is TRUE if Signal S has had a transaction in the

current simulation cycle.
• S`Quiet(t) -- -- Is TRUE if no transaction has been placed on

Signal S for the last ``t`` period. If t=0; it is written as S`Quiet
• S`Last_Event -- Returns the amount of time since the last

value change on S.

20
20

2-39

…Signal Attributes
architecture ex of example is
signal a, a5: bit; signal a1, a2, a3, a4: Boolean;
begin
a <= '0' after 5 ns, '1' after 10 ns, '1' after 15 ns, '0' after 20 ns;
a1 <= a'event;
a2 <= a'stable;
a3 <= a'stable(2 ns);
a4 <= a'quiet;
a5 <= a'last_value;
end ex;

