VHDL Coding Styles for
Synthesis

Dr. Aiman H. El-Maleh
Computer Engineering Department
King Fahd University of Petroleum & Minerals

Qutline...

m Synthesis overview

m Synthesis of primary VHDL constructs
® Constant definition

Port map statement

When statement

With statement

Case statement

For statement

Generate statement

If statement

Variable definition

m Combinational circuit synthesis
Multiplexor

Decoder

Priority encoder

Adder

Tri-state buffer

Bi-directional buffer

...QOutline

m Sequential circuit synthesis

® Latch
Flip-flop with asynchronous reset
Flip-flop with synchronous reset
Loadable register
Shift register
Register with tri-state output
Finite state machine

m Efficient coding styles for synthesis

General Overview of Synthesis...

m Synthesis is the process of translating from an
abstract description of a hardware device into an
optimized, technology specific gate level
implementation.

m Synthesis may occur at many different levels of
abstraction
® Behavioral synthesis
® Register Transfer Level (RTL) synthesis
® Boolean equations descriptions, netlists, block diagrams, truth
tables, state tables, etc.

m RTL synthesis implements the register usage, the data
flow, the control flow, and the machine states as
defined by the syntax & semantics of the HDL.

...General Overview of Synthesis

m Forces driving the synthesis algorithm
® HDL coding style
® Design constraints
» Timing goals
« Area goals
* Power management goals
» Design-For-Test rules
® Target technology
 Target library design rules

m The HDL coding style used to describe the targeted
device is technology independent.

m HDL coding style determines the initial starting point
for the synthesis algorithms & plays a key role in
generating the final synthesized hardware.

VHDL Synthesis Subset

m VHDL is a complex language but only a subset of it is
synthesizable.
m Primary VDHL constructs used for synthesis:
® Constant definition
® Port map statement
® Signal assignment: A <= B
® Comparisons: = (equal), /= (not equal), > (greater than), < (less
than), >= (greater than or equal), <= (less than or equal)
Logical operators: AND, OR, NAND, NOR, XOR, XNOR, NOT
'if' statement
« if (presentstate = CHECK_CAR) then
e end if | elsif
® ‘for' statement (used for looping in creating arrays of elements)

® Other constructs are ‘with’, 'when’, 'when else’, ‘case’, 'wait ".
Also ":=" for variable assignment.

OQutline

m Synthesis overview
m Synthesis of primary VHDL constructs
® Constant definition
Port map statement
When statement
With statement
Case statement
For statement
Generate statement
If statement
Variable definition

m Combinational circuit synthesis
Multiplexor

Decoder

Priority encoder

Adder

Tri-state buffer

Bi-directional buffer

Constant Definition...

library ieee;
use ieee.std_logic_1164.all;
entity constant_ex is

port (inl:in std_logic_vector (7 downto 0); outl : out
std_logic_vector (7 downto 0));

end constant_ex;
architecture constant_ex_a of constant_ex is
constant A : std_logic_vector (7 downto 0) :="00000000";
constant B : std_logic_vector (7 downto 0) :="11111111";
constant C: std_logic_vector (7 downto 0) :="00001111";
begin
outl <= Awhen inl =B else C;
end constant_ex_a;

...Constant Definition

outl(7ed]

Port Map Statement...

library ieee;
use ieee.std_logic_1164.all;
entity sub is
port (a, b : in std_logic; ¢ : out std_logic);
end sub;
architecture sub_a of sub is
begin
c <=aand b;
end sub_a;

11-10

...Port Map Statement...

library ieee;
use ieee.std_logic_1164.all;
entity portmap_ex is

port (inl,in2,in3: in std_logic; outl : out std_logic);

end portmap_ex;
architecture portmap_ex_a of portmap_ex is
component sub
port (a, b : in std_logic; ¢ : out std_logic);
end component;
signal temp : std_logic;

11-11

..Port Map Statement...

begin
u0 : sub port map (inl, in2, temp);
ul: sub port map (temp, in3, outl);
end portmap_ex_a;
use work.all;
configuration portmap_ex_c of portmap_ex is
for portmap_ex_a
for uO,ul : sub use entity work.sub (sub_a);
end for;
end for;
end portmap_ex_c;

11-12

Port Map Statement...

tnl[_»—| aub
I!nED— 'L aub

> outd

!nD

11-13

When Statement

library ieee;
use ieee.std_logic_1164.all;
entity when_ex is
port (inl, in2: in std_logic; outl : out std_logic)
end when_ex;
architecture when_ex_a of when_ex is
begin
outl<='1"wheninl="1"and in2 ="1"else '0';
end when_ex_a;

Ingd > > aut1
au
IInll 2

11-14

With Statement

library ieee;
use ieee.std_logic_1164.all;
entity with_ex is

port (inl,in2: in std_logic; outl : out std_logic);
end with_ex;
architecture with_ex_a of with_ex is
begin

with inl select outl <=in2 when '1’,

'0' when others;

end with_ex_a;

11-15

Case Statement...

library ieee;
use ieee.std_logic_1164.all;
entity case_ex is
port (in1,in2 : in std_logic; outl,out2 : out std_logic);
end case_ex;
architecture case_ex_a of case_ex is
signal b : std_logic_vector (1 downto 0);

begin
process (b)
begin
casebis
when "00"|"11" => outl <="'0"; out2 <="1";
when others => outl <="'1"; out2 <="'0";
end case;
end process;
b<=inl&in2;

end case_ex_a,;

11-16

...Case Statement

tnl A

outl

T a2

11-17

For Statement...

library ieee;
use ieee.std_logic_1164.all;
entity for_ex is

port (inl:in std_logic_vector (3 downto 0); outl : out
std_logic_vector (3 downto 0));

end for_ex;
architecture for_ex_a of for_ex is
begin
process (inl)
begin
for0: foriin Oto 3loop
outl (i) <= not in1(i);
end loop;
end process;
end for_ex_a;

11-18

...For Statement

tni (38—

EnilIl

WA

Enil1]

W

¥
Eni[B]

i

outl[dsA]

ouki

ookl

{

oukl

v

u

k11d]

11-19

Generate Statement

signal A,B:BIT_VECTOR (3 downto 0);
signal C:BIT_VECTOR (7 downto 0);
signal X:BIT;

GEN_LABEL:
for I in 3 downto 0 generate
C(2*1+1) <= A(l) nor X;
C(2*1) <= B(l) nor X;
end generate GEN_LABEL

Bral

ALE]

Br11

ALl

BrLz1

ALZ]

Brail

AL3]

C[B]
D—Dcu]
C[Z]
C[EI]
D—Dcrﬂ

cCrsil

CIB1

VYV VY

it

|

o i |

11-20

If Statement

library ieee;
use ieee.std_logic_1164.all;
entity if_ex is
port (inl,in2: in std_logic; outl : out std_logic);

end if_ex;
architecture if_ex_a of if_ex s
begin
process (inl, in2)
begin
ifinl="1"and in2 ='1"' then outl <="1";
else outl <="0";
end if;
end process; "',,,,H
end if_ex_a; il

11-21

Variable Definition...

library ieee;
use ieee.std_logic_1164.all;
entity variable_ex is

port (a: in std_logic_vector (3 downto 0); b : in std_logic_vector
(3 downto 0); c : out std_logic_vector (3 downto 0));

end variable_ex;
architecture variable_ex_a of variable_ex is
begin
process (a,b)
variable carry : std_logic_vector (4 downto 0);
variable sum : std_logic_vector (3 downto 0);

11-22

...Variable Definition...

begin
carry (0) :='0";
foriin 0to 3loop
sum (i) := a(i) xor b(i) xor carry(i);
carry (i+1) := (a(i) and b(i)) or (b(i) and carry (i))
or (carry (i) and a(i));
end loop;
C <=sum;
end process;
end variable_ex_a;

11-23

...Variable Definition

o> Ir
B

. _pcorue |———4

e

Y

ﬁ

11-24

OQutline

m Synthesis overview

m Synthesis of primary VHDL constructs
® Constant definition

Port map statement

When statement

With statement

Case statement

For statement

Generate statement

If statement

Variable definition

m Combinational circuit synthesis
Multiplexor

Decoder

Priority encoder

Adder

Tri-state buffer

Bi-directional buffer

11-25
Multiplexor Synthesis...
library ieee;
use ieee.std_logic_1164.all;
entity mux is
port (inl, in2, ctrl : in std_logic; outl : out std_logic);
end mux;
architecture mux_a of mux is
begin
process (inl, in2, ctrl)
begin
am o o Il H
if ctrl ='0" then outl <=in1l,; autl
else outl <= in2; Ir
end if; cirl
end process;
end mux_a;

11-26

...Multiplexor Synthesis

entity mux2tol 8is

port (signal s: in std_logic; signal zero,one: in std_logic_vector(7
downto 0); signal y: out std_logic_vector(7 downto 0));

end mux2tol_8;
architecture behavior of mux2tol 8is
begin

y <= one when (s ='1') else zero;
end behavior;

11-27

2x1 Multiplexor using Booleans

architecture boolean_mux of mux2tol 8is

signal temp: std_logic_vector(7 downto 0);
begin

temp <= (others =>s);

y <= (temp and one) or (not temp and zero);
end boolean_mux;

« The s signal cannot be used in a Boolean operation with
the one or zero signals because of type mismatch (s is a
std_logic type, one/zero are std_logic_vector types)

« An internal signal of type std_logic_vector called temp
is declared. The temp signal will be used in
the Boolean operation against the zero/one signals.

» Every bit of temp is set equal to the s signal value.

11-28

2x1 Multiplexor using a Process

architecture process_mux of mux2tol 8is
begin
comb: process (s, zero, one)
begin
y <= zero;
if (s ="1") then
y <= one;
end if;
end process comb;
end process_mux ;

11-29

Decoder Synthesis...

library ieee;
use ieee.std_logic_1164.all;
entity decoder is
port (in1,in2: in std_logic; out00, out01, out10, outll : out std_logic);
end decoder;
architecture decoder_a of decoder is
begin
process (inl, in2)
begin
ifin1="0"and in2 ='0' then out00 <="1";
else out00 <='0";
end if;
ifin1="0"and in2 ='1' then out01 <="1";
else out01 <='0";
end if;
11-30

...Decoder Synthesis

ifinl="1"and in2 ='0" then out10 <="1";

else outl10 <='0";
end if;

ifin1="1"and in2 ='1' then outl1l <="1";

else outll <="'0";
end if;

outBE

end process;
end decoder_a; A
£nil —[f:x}
fa)
rnz[:>—4+[f:x}

outlB

outll

outdl

Yy

11-31

3-t0-8 Decoder Example...

entity dec3to8 is

port (signal sel: in std_logic_vector(2 downto 0); signal en: in std_logic;

signal y: out std_logic_vector(7 downto 0))

end dec3to8;
architecture behavior of dec3to8is
begin
process (sel, en)
Begin
y <=%11111111";
if (en ='1") then
case sel is

when “000” =>y(0) <="*

when “010” =>y(2) <=
when “100” =>y(4) <=

when “110" =>y(6) <=

when others => Null;
end case;
end if;
end process;
end behavior;

1

when “001” =>y(1) <=‘0’;
when “011” =>y(3) <=‘0’;
when “101” =>y(5) <="'0’;
when “111" =>y(7) <=‘0’;

11-32

..3-t0-8 Decoder Example...

—

i

0000900

i

o

Il

03

0

I

il
Hlj

11-33

..3-t0-8 Decoder Example ...

- :—1-—’&-:] L
= =y

[e —

i T_ﬂﬁ-_‘-_:-:.-: e

b Epm o

Ty
e
Sy, o)
—t s = e =
[- ——

11-34

...3-t0-8 Decoder Example...

entity dec3to8 is

port (signal sel: in std_logic_vector(2 downto 0); signal en: in std_logic; signal y: out
std_logic_vector(7 downto 0)) ;

end dec3to8;
architecture behavior of dec3to8v is
signal t: std_logic_vector(7 downto 0);

begin
process (sel, en)
Begin
t <="00000000";
if en ='1") then
case sel is
when "000" =>t(0) <='1"; when "001" =>t(1) <="'1";
when "010" =>t(2) <='1"; when "011" =>{(3) <="1"
when "100" =>t(4) <='1"; when "101" => t(5) <= '1';
when "110" =>(6) <='1'; when "111" =>(7) <="1"
When others => Null;
end case;
end if;
end process;
Y <= Not t;

end behavior;

11-35

3-t0-8 Decoder Example...

11-36

Architecture of Generic Decoder

library ieee;
use ieee.std_logic_1164.all;
entity generic_decoder is
Generic(K: Natural :=3);
port (signal sel: in std_logic_vector(K-1 downto 0); signal en: in std_logic;
signal y: out std:loglc_vector((Z**K-l downto O)?;
end generic_decoder;
architecture behavior of generic_decoder is
begin
process (sel, en)
begin
y <= (others =>'0") ;
foriin y'range loop
if (en ='1"and Bin2Int(sel) =i) then
y()<="1";
end if ;
end loop
end process;
end behavior;

Bin2Int is a function to convert
from std_logic_vector to integer

11-37

Architecture of Generic Decoder

|
|

11-38

A Common Error in Process
Statements...

m When using processes, a common error is to forget to
assign an output a default value.

® ALL outputs should have DEFAULT values
m If there is alogical path in the model such that an
output is not assigned any value

® the synthesizer will assume that the output must retain its
current value

® a latch will be generated.

m Example: In dec3to8.vhd do not assign 'y' the default
value of B"11111111"
® If enis O, then 'y' will not be assigned a value
® In the new synthesized logic, all 'y' outputs are latched

11-39

...A Common Error in Process
Statements...

entity dec3to8 is

port (signal sel: in std_logic_vector(3 downto 0); signal en: in std_logic;
signal y: out std_logic_vector(7 downto 0))

end dec3to8;
architecture behavior of dec3to8is

begin
process (sel, en) No default value
y <="1111111"; assigned to y!!
if (en ='1") then
case sel is
when “000” =>y(0) <=‘0’; when “001" =>y(1) <='0;
when “010” =>y(2) <=‘0’; when “011” =>y(3) <="'0;
when “100” =>y(4) <=‘0"; when “101" =>y(5) <="'0;
when “110" =>y(6) <=‘0"; when “111" =>y(7) <=‘0’;
end case;
end if;

end process;
end behavior;

11-40

...A Common Error in Process
Statements

IIi | ?
1]

i i

pr—

11-41

Another Incorrect Latch Insertion
Example...

entity case_example is

port (in1,in2 :in std_logic; outl, out2 : out std_logic);
end case_example;
architecture case_latch of case_example is

signal b : std_logic_vector (1 downto 0);

begin
process (b)
begin
casebis
when "01" => outl <='0"; out2 <="1";
when "10" => outl <="1"; out2 <="0";
when others => outl <="1";
end case;
end process; out2 has not been
b <=inl&in2; assigned a value for
end case_latch; others condition!!

11-42

...Another Incorrect Latch Insertion
Example

B T 2

LDt

5 il

11-43

Avoiding Incorrect Latch Insertion

architecture case_nolatch of case_example is
signal b : std_logic_vector (1 downto 0);
begin
process (b)

begin
casebis
when "01" => outl <="'0"; out2 <="'1";
when "10" => outl <="'1"; out2 <="'0';
when others => outl <="1"; out2 <="0";
end case;
end process; £n b "
b <=inl&in2; nt e

12
end case_nolatch; o

11-44

Eight-Level Priority Encoder...

Entity priority is
Port (Signal y1, y2, y3, y4, y5, y6, y7: in std_logic;
Signal vec: out std_logic_vector(2 downto 0));
End priority;
Architecture behavior of priority is
Begin
Process(yl, y2, y3, y4, y5, y6, y7)
begin
if (y7="1) then vec <="111"; elsif (y6 =‘1") then vec <="110";
elsif (y5="'1") then vec <="101"; elsif (y4 ='1") then vec <="100";
elsif (y3 ='1") then vec <="011"; elsif (y2="1") then vec <="“010";
elsif (yl='1") then vec <="001"; else vec <="“000";
end if;
end process;
End behavior

11-45
...Eight-Level Priority Encoder...
I I I e
L1 “ . [n] L1
B -1 S
- .—l—..-.t.r”. (i !_“—f E‘ . u
a E £ .': a

-

11-46

Eight-Level Priority Encoder...

Architecture behavior2 of priority is

Begin
Process(yl,y2,y3,vy4,y5,y6, y7)
begin
vec <="000";
if (yl1="1") then vec <="001"; end if;
if (y2="1") then vec <="010"; end if;
if (y3="1") then vec <="011"; end if;
if (y4="1") then vec <="100"; end if;
if (y5="1") then vec <="101"; end if;
if (y6 ='1") then vec <="110"; end if;
if (y7="1") then vec <=*“111"; end if; Equivalent 8-level
end process; priority encoder.

End behavior?2;

11-47

Ripple Carry Adder...

library ieee;

use ieee.std_logic_1164.all;

entity adder4 is

port (Signal a, b: in std_logic_vector (3 downto 0);

Signal cin : in std_logic;
Sighal sum: out std_logic_vector (3 downto 0);
Signal cout : out std_logic);

end adder4;

architecture behavior of adder4 is

Signal c: std_logic_vector (4 downto 0);

begin

C is a temporary signal
to hold the carries.

11-48

...Ripple Carry Adder...

process (a, b, cin, ¢)
begin
c(0) <=cin;
for lin O to 3loop
sum(l) <= a(l) xor b(l) xor c(l);
c(I+1) <= (a(l) and b(l)) or (c(l) and (a(l) or b(l)));
end loop;

« The Standard Logic 1164 package does not
end process; | define arithmetic operators for the std_logic type.

cout <= _0(4); + Most vendors supply some sort of arithmetic
End behavior; package for 1164 data types.

« Some vendors also support synthesis using the
'+' operation between two std_logic
signal types (Synopsis).

11-49
...Ripple Carry Adder
D) 2 .}3,_!—<|
g }7: 4 _‘\ > e

11-50

Tri-State Buffer Synthesis

library ieee;
use ieee.std_logic_1164.all;
entity tri_ex is
port (inl, control : in std_logic; outl : out std_logic);
end tri_ex;
architecture tri_ex_a of tri_ex is
begin
outl <=inl1 when control ='1' else 'Z’;
end tri_ex_a;

conkral

Inl autl

11-51

Bi-directional Buffer Synthesis
library ieee;
use ieee.std_logic_1164.all;
entity inout_ex is

port (iol, io2 : inout std_logic; ctrl : in std_logic);
end inout_ex;
architecture inout_ex_a of inout_ex is
begin

iol <=io2when ctrl ='1' else 'Z'; =tr1 * 4

i02 <=iol when ctrl ='0' else 'Z'; - a2

end inout_ex_a,; 4
B rlom

11-52

OQutline

m Sequential circuit synthesis

® Latch
Flip-flop with asynchronous reset
Flip-flop with synchronous reset
Loadable register
Shift register
Register with tri-state output
Finite state machine

m Efficient coding styles for synthesis

11-53

Sequential Circuits

m Sequential circuits consist of both combinational logic

and storage elements.
m Sequential circuits can be

* Moore-type: outputs are a combinatorial function of Present

State signals.

* Mealy-type: outputs are a combinatorial function of both Present

State signals and primary input

S.

Inputs Combinational

ﬁ LOgiC

Present State

FFs

CLK =—>p

Next State

—

Primary
Outputs

11-54

Template Model for a Sequential
Circuit

entity model_name is
port (/ist of inputs and oufputs);
end model_name;
architecture behavior of model/_name is
internal signal declarations
begin
-- the stafe process defines the storage elements
state: process (sensitivity list - clock, resel, next_stafe inputs)
begin
vhdl statements for state elements
end process state;
-- the comb process defines the combinational logic
comb: process (sensitivity list -- usually includes all inputs)
begin
vhdl statements which specify combinational logic
end process comb;
end behavior;

11-55

Latch Synthesis...

library ieee;
use ieee.std_logic_1164.all;
entity latch_ex is
port (clock, inl :in std_logic; outl : out std_logic);
end latch_ex;
architecture latch_ex_a of latch_ex is
begin
process (clock, inl)
begin
if (clock ='1") then
outl <=inl;
end if;
end process;
end latch_ex_a;

11-56

...Latch Synthesis

tnl[»— — > autl

c lnnhD— P

11-57
Flip-Flop Synthesis with
Asynchronous Reset...
library ieee;
use ieee.std_logic_1164.all;
entity dff_asyn is
port(reset, clock, d: in std_logic; q: out std_logic);
end dff_asyn;
architecture dff_asyn_a of dff_asyn is
begin
process (reset, clock) Note that the reset input has precedence
begin over the clock in order to define the
if (reset ='1") then asynchronous operation.
q<='0%
elsif clock ='1" and clock'event then
q<=d;
end if;

end process;
end dff_asyn_a;

11-58

...Flip-Flop Synthesis with
Asynchronous Reset

FD=

l:ln:ir:hl -2 [-

R,
rezet

11-59

Flip-Flop Synthesis with
Synchronous Reset...

library ieee;
use ieee.std_logic_1164.all;
entity dff_syn is
port(reset, clock, d: in std_logic; q: out std_logic);
end dff_syn;
architecture dff_syn_a of dff_syn is
begin
process (clock)
begin
if clock ='1" and clock'event then
if (reset ='1") then q <="'0";
else q <=d;
end if;
end if;
end process;
end dff_syn_a;

11-60

...Flip-Flop Synthesis with
Synchronous Reset

053

11-61

8-bit Loadable Register with
Asynchronous Clear...

library ieee;

use ieee.std_logic_1164.all;

entity reg8bit is

port(reset, clock, load: in std_logic;

din: in std_logic_vector(7 downto 0);
dout: out std_logic_vector(7 downto 0));

end reg8bit;

architecture behavior of reg8bit is

signal n_state, p_state: std_logic_vector(7 downto 0);

begin
dout <= p_state;
comb: process (p_state, load, din)
begin
n_state <= p_state;
if (load ='1'") then n_state <= din; end if;
end process comb;

11-62

...8-bit Loadable Register with
Asynchronous Clear...

state: process (clock , reset)
begin
if (reset ='0") then p_state <= (others =>'0");
elsif (clock ='1" and clock'event) then
p_state <=n_state;

end if;

end process state; * The state process defines a storage element

End behavior; which is 8-bits wide, rising edge triggered,
and had a low true asynchronous reset.

— No— FGE *Note that the reset input has precedence

= .= | overthe clock in order to define the
L asynchronous operation.
@ =
B

11-63

...8-bit Loadable Register with
Asvynchronous Clear

_ m— IS -T !

— “—"1 e —]-—
4 1 o= :____?1__.}:__:__ | L:—TJ l‘ —
s - :_] E‘-T'J — __ H

. | e e = T B

B .'_&'—n'—__‘ T | F“:r y .|. o

L= =— .
i [[]
- _ _!:"_5:=='—| =l e - | | — T -
] ;_- Eh . - E‘ i
_ - - I:-f _______ -

11-64

4-bit Shift Register...

library ieee;
use ieee.std_logic_1164.all;
entity shift4 is
port(reset, clock: in std_logic; din: in std_logic;
dout: out std_logic_vector(3 downto 0));
end shift4;
architecture behavior of shift4 is
signal n_state, p_state: std_logic_vector(3 downto 0);
begin
dout <= p_state;
state: process (clock, reset)
begin
if (reset ='0') then p_state <= (others =>'0');
elsif (clock ='1" and clock'event) then
p_state <= n_state;
end if;
end process state;

11-65

...4-bit Shift Register...

comb: process (p_state, din)

begin
n_state(0) <= din;
for I'in 3 downto 1 loop

n_state(l) <= p_state(I-1);

end loop;

end process comb;

End behavior;

first D-FF.

« Serial input din is assigned to the D-input of the

« For loop is used to connect the output of
previous flip-flop to the input of current flip-flop.

11-66

...4-bit Shift Register

e P
amr=z Leroo

1 1.1

EH Ry HY
E oty HY

11-67
Register with Tri-State Output...
library ieee;
use ieee.std_logic_1164.all;
entity tsreg8bit is
port(reset, clock, load, en: in std_logic;
signal din: in std_logic_vector(7 downto 0);
signal dout: out std_logic_vector(7 downto 0));
end tsreg8bit;
architecture behavior of tsreg8bit is
signal n_state, p_state: std_logic_vector(7 downto 0);
begin
dout <= p_state when (en="1") else "227277277",
comb: process (p_state, load, din) « Z assignment used
begin to specify tri-state
n_state <= p_state; capability.

if (load ='1'") then n_state <= din; end if;
end process comb;
11-68

...Register with Tri-State Output...

state: process (clock , reset)

begin
if (reset ='0') then p_state <= (others =>'0");
elsif (clock ='1" and clock'event) then

p_state <=n_state;

end if;

end process state;

End behavior

= [>o FDCE (-

R

Ll!

11-69
...Register with Tri-State Output
5 | fem
|_l| T

11-70

Finite State Machine Synthesis...

* Mealy model
* Single input, two outputs

* Synchronous reset

11-71

...Finite State Machine Synthesis...

library ieee;
use ieee.std_logic_1164.all;
entity state_ex is
port (in1, clock, reset : in std_logic; outl:
out std_logic_vector (1 downto 0));
end state_ex;
architecture state_ex_a of state_ex is
signal cur_state, next_state : std_logic_vector (1 downto 0);
begin
process (clock, reset)
begin
if clock ="1" and clock'event then
if reset ='0' then cur_state <="00";
else cur_state <= next_state;
end if;
end if;
end process; 11-72

...Finite State Machine Synthesis...

process (inl, cur_state)
begin
case cur_state is
when "00" =>if in1 ='0' then next_state <="10"; outl <="00";
else next_state <="01"; outl <="10";

end if;
when "01" =>if in1 ='0' then next_state <= cur_state;
outl <="01";
else next_state <="10"; outl <="10";
end if;

when "10" => next_state <="11"; outl <="10";
when "11" => next_state <="00"; outl <="10";
when others => null;
end case;
end process;
end state_ex_a;

11-73
...Finite State Machine Synthesis
o
H o
[]
&

11-74

OQutline

m Sequential circuit synthesis

® Latch
Flip-flop with asynchronous reset
Flip-flop with synchronous reset
Loadable register
Shift register
Register with tri-state output
Finite state machine

m Efficient coding styles for synthesis

11-75

Key Synthesis Facts

m Synthesis ignores the after clause in signal
assignment

®* C<=AANDB after 10ns

® May cause mismatch between pre-synthesis and post-
synthesis simulation if a non-zero value used

® The preferred coding style is to write signal assignments
without the after clause.

m If the process has a static sensitivity list, it is ignored
by the synthesis tool.
m Sensitivity list must contain all read signals

® Synthesis tool will generate a warning if this condition is not
satisfied

® Results in mismatch between pre-synthesis and post-
synthesis simulation

11-76

Synthesis Static Sensitivity Rule

Original VHDL Code
Process(A, B)
Begin
D <= (AAND B) OR C;

End process;

Synthesis View of Original VHDL Code
Process(A, B, C)
Begin

D <= (A AND B) OR C;

End process;

Pre-Synthesis Simulation

/N N\

0O ®>r

Post-Synthesis Simulation

/N N\
/NN

o0 ®>r

11-77

Impact of Coding Style on Synthesis

Execution Time

Inefficient Synthesis Execution Time
Process(Sel, A, B, C, D)
Begin

if Sel = “00 then Out <= A;

elsif Sel = “01” then Out<=B;

elsif Sel = “10” then Out<=C,;

else Out<=D;

endif;

End process;

Efficient Synthesis Execution Time
Process(Sel, A, B, C, D)
Begin
case Sel is
when “00 => Qut <= A;
when “01” Out<=B,;
when “10” Out<=C;
when “11” Out<=D;
end case;

End process;

required.

 Synthesis tool is capable of deducing that the if ...elsif
conditions are mutually exclusive but precious CPU time is

« In case statement, when conditions are mutually exclusive.

1-78

Synthesis Efficiency Via Vector
Operations

Inefficient Synthesis Execution Time Efficient Synthesis Execution Time
Process(Scalar_A, Vector_B) Process(Scalar_A, Vector_B)
Begin variable Temp:

for k in Vector_B'Range loop §td_log|c_vector(Vect0r_B Range)

Vector_C(k) <=Vector_B(k) and
Scalar_A;
end loop; Temp := (others => Scalar_A);

Begin

End process: Vector_C <=Vector_B and Temp;

End process;

« Loop will be unrolled and analyzed by the synthesis tool.

« Vector operation is understood by synthesis and will be
efficiently synthesized.

11-79

Three-State Synthesis

m A three-state driver signal must be declared as an
object of type std_logic.

m Assignment of ‘Z’ infers the usage of three-state
drivers.

m The std_logic_1164 resolution function, resolved, is
synthesized into a three-state driver.

m Synthesis does not check for or resolve possible data
collisions on a synthesized three-state bus

® |t is the designer responsibility

m Only one three-state driver is synthesized per signal
per process.

11-80

Example of the Three-State / Signal /
Process Rule

Process(B, Use_B, A, Use_A)

Begin A

D_Out<='Z";

if Use_B ="1' then D_Out
D_Out <= B; B

end if; Use A = °

if Use_A ='1"then
D_Out<=A; Use B

end if;

End :
na process; L ast scheduled

assignment has priority

11-81

Latch Inference & Synthesis Rules...

m A latch is inferred to satisfy the VHDL fact that signals
and process declared variables maintain their values
until assigned new ones.

m Latches are synthesized from if statements if all the
following conditions are satisfied
® Conditional expressions are not completely specified
* An else clause is omitted

® Objects conditionally assigned in an if statement are not
assigned a value before entering this if statement

® The VHDL attribute "TEVENT is not present in the conditional if
expression.

m If latches are not desired, then a value must be
assigned to the target object under all conditions of an
if statement (without the "EVENT attribute).

11-82

...Latch Inference & Synthesis Rules

m For a case statement, latches are synthesized when it
satisfies all of the following conditions:
® An expression is not assigned to a VHDL object in every
branch of a case statement,

® VHDL objects assigned an expression in any case branch are
not assigned a value before the case statement is entered.

m Latches are synthesized whenever a for...loop
statement satisfies all of the following conditions
® for...loop contains a next statement

® Objects assigned inside the for...loop are not assigned a
value before entering the enclosing for...loop

11-83

For...Loop Statement Latch Example

Process(Data_In, Copy_Enable) . i
Seven latches will be synthesized

Begin
for k in 7 downto 0 loop
Data_In(k) Data_Out(k)
next when Copy_Enable(k)="0"; Iy BN
Data_Out(k) <= Data_in(k); LATCH
end loop; C>—r
End process; Copy_Enable(k)

11-84

Flip-Flop Inference & Synthesis
Rules...

m Flip-flops are inferred by either
® Wait until....
« Wait on... is not supported by synthesis
« Wait for... is not supported by synthesis
® |f statement containing 'EVENT

m Synthesis accepts any of the following functionally
equivalent statements for inferring a FF
® Wait until Clock="1";
® Wait until Clock’Event and Clock="1";
® Wait until (not Clock Stable) and Clock="1";

11-85

...Flip-Flop Inference & Synthesis
Rules

m Synthesis does not support the following
Asynchronous description of set and reset signals

® Wait until (clock="1") or (Reset="1")
® Wait on Clock, Reset

m When using a synthesizable wait statement only
synchronous set and reset can be used.

m If statement containing the VHDL attribute 'EVENT
cannot have an else or an elsif clause.

11-86

Alternative Coding Styles for
Synchronous FSMs

m One process only
® Handles both state transitions and outputs
m Two processes

® A synchronous process for updating the state register

® A combinational process for conditionally deriving the next
machine state and updating the outputs

m Three processes

® A synchronous process for updating the state register

® A combinational process for conditionally deriving the next
machine state

® A combinational process for conditionally deriving the outputs

11-87

