COE 405
Behavioral Descriptions in
VHDL

Dr. Aiman H. El-Maleh
Computer Engineering Department
King Fahd University of Petroleum & Minerals

Qutline

m Constructs for Sequential Descriptions

m Process Statement

m Wait Statement

m Control Statements: Conditional & Iterative
m Behavioral Modeling of Mealy & Moore FSMs
m Assertion for Behavioral Checks

m Handshaking

m Formatted I/O

10-2

Concurrent Versus Sequential

Statements

Sequential Statements

*Used Within Process Bodies or
SubPrograms

*Order Dependent

*Executed When Control is Transferred to
the Sequential Body

—Assert

-Signal Assignment
—Procedure Call

—Variable Assignment

—IF Statements

—Case Statement

—Loops

-Wait, Null, Next, Exit, Return

Concurrent Statements

*Used Within Architectural Bodies or
Blocks

*Order Independent

*Executed Once At the Beginning of
Simulation or Upon Some Triggered
Event

—Assert
-Signal Assignment

—Procedure Call (None of Formal
Parameters May be of Type
Variable)

—Process

—-Block Statement
—Component Statement
—Generate Statement
—Instantiation Statement

10-3

Process Statement ...

m Main construct for Behavioral Modeling.

m Other concurrent statements can be modeled by an

equivalent process.

m Process statement is a concurrent construct which
performs a set of consecutive (Sequential) actions
once it is Activated. Thus, only Sequential Statements
are allowed within the Process Body.

Optional Optional
Process_Label: PROCESS (Sensitivity_List) Constant/Varia
Process_Declarations; bles No Signal

Begin
Seqguential Statements;
END Process;

Declarations
Allowed

10-4

.. Process Statement ...

m Unless sequential part is suspended

® |t executes in zero real and delta time
® |t repeats itself forever

unless suspended

—
I BEGIN
ZEero .
. sequential
time part
repeats
forever ¥ | END PROCESS

10-5

. Process Statement

Whenever a SIGNAL in the Sensitivity_List of the Process
changes, the Process is Activated.

After executing the last statement, the Process is SUSPENDED
Until one (or more) Signal in the Process Sensitivity_List changes
value where it will be REACTIVATED.

A Process Statement Without a Sensitivity List is ALWAYS
ACTIVE, i.e. After the Last Statement is Executed, execution
returns to the First Statement and Continues (Infinite Looping).

Itis ILLEGAL to use WAIT-statement Inside a Process Which Has
a Sensitivity_List .

In case no Sensitivity_List exists, a Process may be activated or
suspended using the WAIT-statement.

Conditional and selective signal assignments are strictly
concurrent and cannot be used in a process.

10-6

Process Examples

Process Sequential Processing:
Begin *First Ais Scheduled to Have a Value "1°
A<="17; *Second B is Scheduled to Have a Value "0°
B<="0; *A & B Get their New Values At the SAME
End Process; TIME (1 Delta Time Later)
Process Assuming a "0’ Initial Value of A,
Begin *First A is Scheduled to Have a Value "1°
A<="1" One Delta Time Later
IF (A="1) Then Actionl; *Thus, Upon Execution of IF_Statement,
Else Action2: A Has aValue of "0 and Action 2 will
End IF: be Taken.
End Process: |/f A was Declared as a Process
Variable, Action1l Would Have Been
Taken

10-7
Wait Statement
m Syntax of Wait Statement :
®* WAIT; -- Forever
® WAIT ON Signal_List; -- On event on a signal
® WAIT UNTIL Condition; -- until event makes condition
true;

® WAIT FOR Time_Out_Expression;
® WAIT FOR 0 any_time_unit; -- Process Suspended for 1 delta
m When a WAIT-statement is Executed, the process suspends and
conditions for its Reactivation are Set.
m Process Reactivation conditions may be Mixed as follows
® WAIT ON Signal_List UNTIL Condition FOR Time_Expression ;
® wait on X,Y until (Z = 0) for 70 NS; -- Process Resumes

After 70 NS OR (in Case X or Y Changes Value and Z=0 is
True) Whichever Occurs First

® Process Reactivated IF:
« Event Occurred on the Signal_List while the Condition is True, OR 10-8
« Wait Period Exceeds “"Time_Expression ™

Positive Edge-Triggered D-FF Examples

D_FF: PROCESS (CLK)
Begin
IF (CLK’Event and CLK ="1") Then
Q <= D After TDelay;
END IF;
END Process;

D_FF: PROCESS -- No Sensitivity_List
Begin
WAIT UNTIL CLK="17;
Q <= D After TDelay;
END Process;

D_FF: PROCESS (CIk, CIr) -- FF With Asynchronous Clear
Begin

IF CIr="1" Then Q <=0 After TDO;
ELSIF (CLK’Event and CLK ="1") Then Q <= D After TD1;
END IF;

END Process;

10-9

Sequential Statements

| CONTROL STATEMENTS |

Conditional Iterative

* IF statements * Simple Loop

* CASE statement * For Loop

*While Loop

10-10

Conditional Control — IF Statement

m Syntax: 3-Possible Forms
(i) IF condition Then
statements;
End IF;
(i) IF condition Then
statements;
Else
statements;
End IF;
(i) IF condition Then
statements;
Elsif condition Then
statements;
Elsif condition Then
statements;

End IF;
10-11

Conditional Control — Case Statement

m Syntax:
(i) CASE Expression is
when value => statements;
when valuel | value2| ...|valuen => statements;
when discrete range of values => statements;
when others => statements;
End CASE;
m Values/Choices should not overlap (Any value of the

Expression should Evaluate to only one Arm of the Case
statement).

m All possible choices for the Expression should be
accounted for Exactly Once.

10-12

Conditional Control — Case Statement

m If “others ™ is used, it must be the last “arm " of the CASE
statement.

m There can be Any Number of Arms in Any Order (Except
for the others arm which should be Last)

CASE x is
when 1=>y :=0;
when 2|3 =>y:=1;
when 4to 7 =>y :=2;
when others =>vy :=3;
End CASE;

10-13

Loop Control ...

m Simple Loops
m Syntax:
[Loop_Label:] LOOP
statements;
End LOOP [Loop_Label];
m The Loop_Label is Optional

m The exit statement may be used to exit the Loop. It has
two possible Forms:
® exit [Loop_Label]; -- This may be used in an if statement
® exit [Loop_Label] when condition;

10-14

...Loop Control

Process
variable A : Integer :=0;
variable B : Integer :=1;

Begin
Loopl: LOOP

A=A+1;

B .= 20;

Loop2: LOOP
IFB <(A*A)Then

exit Loop2;

End IF;
B:=B-A;

End LOOP Loop?2;
exit Loopl when A > 10;
End LOOP Loopl;

End Process; 10-15
FOR Loop
- S] [ntaX' Need Not Be Declared
[Loop_Label]: FOR Loop_Variable in range LOOP
statements;
End LOOP Loop_Label;
Process
variable B : Integer :=1;
Begin
Loopl: FOR A in 1 TO 10 LOOP
B := 20;
Loop2: LOOP
IFB<(A*A)Then
exit Loop2;
End IF;
B:=B-A;
End LOOP Loop2;
End LOOP Loopl;
10-16

End Process;

WHILE Loop

m Syntax:
[Loop_Label]: WHILE condition LOOP

statements;
End LOOP Loop_Label;

Process
variable B:Integer :=1;
Begin
Loopl: FOR A in 1 TO 10 LOOP
B := 20;
Loop2: WHILE B< (A*A) LOOP
B:=B-A;
End LOOP Loop2;

End LOOP Loopl;
End Process;

10-17

Next & Null Statements

m Syntax:

Next [Loop_Label] [When Condition];
® Skip Current Loop lteration When Condition is True

® If Loop_Label is Absent, innermost Loop is Skipped
When Condition is True

® If Condition is Absent, Appropriate Loop Iteration is
Skipped.

® Applicable for For Loops
m Null Statement

Syntax: Null;

® Does Nothing

® Useful in Case Statements If No Action Is Required. L0.18

A Moore 1011 Detector using Wait

~ o
ENTITY moore_detector IS Lo A
PORT (x, clk : IN BIT; (o 5

z : OUT BIT);
END moore_detector;

“\
1D11l
*Can use WAIT in a Process K /o
statement to check for events
on clk °"°) &3’3/«)

ARCHITECTURE behavioral_state_machine OF moore_detector IS
TYPE state IS (reset, gotl, got10, got101, got1011);

SIGNAL current : state :=reset;

BEGIN

10-19

A Moore 1011 Detector using Wait

PROCESS
BEGIN
CASE current IS
WHEN reset => WAIT UNTIL clk ='1";

IF x ='1' THEN current <= gotl; ELSE current <=reset; END IF;
WHEN gotl => WAIT UNTIL clk ='1'

IF x ='0" THEN current <= got10; ELSE current <= gotl; END IF;
WHEN got10 => WAIT UNTIL clk ='1";

IF x ='1' THEN current <= got101; ELSE current <=reset; END IF;
WHEN got101 => WAIT UNTIL clk ='1";

IF x ='1' THEN current <= got1011; ELSE current <= got10; END IF;
WHEN got1011 =>z <="1"; WAIT UNTIL clk ='1'

IF x ='1' THEN current <= gotl; ELSE current <= got10; END IF;
END CASE;
WAIT FOR 1 NS; z <="'0%
END PROCESS;
END behavioral_state_machine;

10-20

A Moore 1011 Detector without Wait

ARCHITECTURE most_behavioral_state_machine OF moore_detector IS
TYPE state IS (reset, gotl, got10, got101, got1011);
SIGNAL current : state :=reset;
BEGIN
PROCESS (clk)
BEGIN
IF (clk ='1" and CLK’Event) THEN
CASE current IS
WHEN reset =>

IF x ='1' THEN current <= gotl; ELSE current <=reset; END IF;
WHEN gotl =>

IF x ='0' THEN current <= got10; ELSE current <= gotl; END IF;
WHEN got10 =>

IF x ='1' THEN current <= got101; ELSE current <= reset; END IF;
WHEN got101 =>

IF x ='1' THEN current <= got1011; ELSE current <= got10; END IF;
WHEN got1011 =>

IF x ='1' THEN current <= gotl; ELSE current <= got10; END IF;
END CASE;
END IF;
END PROCESS;
z <="1' WHEN current = got1011 ELSE '0;
END most_behavioral_state_machine; 10-21

Generalized VHDL Mealy Model

Architecture Mealy of fsm is
Signal D, Y: Std_Logic_Vector(...); -- Local Signals
Begin
Register: Process(Clk)
Begin
IF (CIK'EVENT and Clk =1") Then Y <=D;
End IF;
End Process;
Transitions: Process(X, Y)
Begin Y F1
D <=F1(X, Y);
End Process;
Output: Process(X, Y) .
. Register
Begin D
Z<=F2(X,Y);
End Process;
End Mealy;

X —»

F2

10-22

Generalized VHDL Moore Model

Architecture Moore of fsm is
Signal D, Y: Std_Logic_Vector(...); -- Local Signals
Begin
Register: Process(CIk)
Begin
IF (CIK'EVENT and Clk ='1") Then Y <=D;
End IF;
End Process;
Transitions: Process(X, Y)

Begin
D <= F1(X, Y); F1

End Process;
Output: Process(Y) Ze | B2

Begin Y

Z <=F2(Y); Register

End Process;
End Moore;

10-23

FSM Example ...

Entity fsm is
port (Clk, Reset :in Std_Logic;

X :in Std_Logic_Vector(0 to 1);

z :out Std_Logic_Vector(1 downto 0));
End fsm;

Architecture behavior of fsm is
Type States is (stO, st1, st2, st3);
Signal Present_State, Next_State : States;
Begin
reg: Process(Reset, CIk)
Begin
IF Reset ="1" Then

elsIF (CIK’'EVENT and Clk =°1") Then
Present_State <= Next_state;
End IF;
End Process;

Present_State <= st0; -- Machine Reset to st0

10-24

... FSM Example

Transitions: Process(Present_State, X)
Begin
CASE Present_State is
when st0 =>
Z<=700";
IF X =""11" Then Next_State <= st0;
else Next_State <=stl; End IF;
when stl =>
Z<="01";
IF X =""11" Then Next_State <= st0;
else Next_State <= st2; End IF;
when st2 =>
Z<="10";
IF X =""11" Then Next_State <= st2;
else Next_State <=st3; End IF;
when st3 =>
Z<=""117
IF X ="11" Then Next_State <= st3;
else Next_State <= st0; End IF;
End CASE;
End Process; 10-25
End behavior;

Using Wait for Two-Phase Clocking

¢l <=not c1 after 500ns;
phase2: PROCESS
BEGIN

WAIT UNTIL c1 ='0";
WAIT FOR 10 NS;
c2<="1"

WAIT FOR 480 NS;
c2<="0,

END PROCESS phase2;

Time 0.5 1.0 1.5 2.0 us

- ‘ < 10NS 10-26

Assert Statement ...

m Syntax:

ASSERT assertion_condition REPORT
"reporting_message" SEVERITY severity_level;

Semantics

® Make sure that assertion_condition is true
® Otherwise report "reporting message" then

® Take the severity level action

Severity: FAILURE ERROR WARNING NOTE
Use assert to flag violations

Use assert to report events

m Can be sequential or concurrent
10-27

... Assert Statement

BEGIN

dff: PROCESS (rst, set, clk)

BEGIN

ASSERT

(NOT (set ='1' AND rst = '1")) *Conditions are checked

REPORT :

"set and rst are both 1" only when Process is

SEVERITY NOTE: activated

IF set ='1' THEN *Make sure that set="1"

state <="1' AFTER sq_delay; —1°

ELSIF rst = '1' THEN AND rst="1"' does not

state <= '0' AFTER rq_delay; happen

ELSIF clk ='1' AND clk EVENT THEN | «Severity NOTE issues

state <= d AFTER cq_delay;

END IF: message

END PROCESS dff;

g <= state;

gb <= NOT state;

10-28

END behavioral;

Checking for Setup & Hold Time ...
Moo L | -

— | T | |
ftime

data

e | | <«— =>»hold
1ima

Setup check in English:

When (clock changes from zero to 1),

if (data input has not been stable at least for the amount of the setup time),
then a setup time violation has occurred.

Setup check in VHDL: *When the clock changes, check for
(clock="" AND NOT clock'STABLE) | stable data
AND

*Check is placed after clock changes

(NOT data'STABLE (setup_time) 10-29

... Checking for Setup & Hold Time ...

Hold check in English:

When (there is a change on the data input)

if (logic value on the clock is '1") and

(clock has got a new value more recent than the amount of hold time)
then a hold time violation has occurred.

Hold check in VHDL:
(data’EVENT)

AND

(clock="1")

AND

(NOT clock'STABLE (hold_time))

*When data changes while clock is '1', check for stable clock
*Check is placed after data changes

10-30

... Checking for Setup & Hold Time .

ENTITY d_sr_flipflop IS

GENERIC (sq_delay, rg_delay, cq_delay : TIME := 6 NS;
set_up, hold : TIME := 4 NS);

PORT (d, set, rst, clk : IN BIT; q, qb : OUT BIT);

BEGIN

REPORT "Set_up time violation"

SEVERITY WARNING;

ASSERT (NOT (d'EVENT AND clk = "1 AND NOT clk'STABLE(hold)))
REPORT "Hold time violation"

SEVERITY WARNING;

END d_sr_flipflop;

ASSERT (NOT (clk ='1' AND clk'EVENT AND NOT d'STABLE(set_up)))

*Concurrent assertion statements
*Can be placed also in the architecture

10-31

... Checking for Setup & Hold Time

ARCHITECTURE behavioral OF d_sr_flipflop IS
SIGNAL state : BIT :='0;

BEGIN

dff: PROCESS (rst, set, clk)

BEGIN

ASSERT (NOT (set ='1' AND rst ='1")

REPORT "set and rst are both 1"

SEVERITY NOTE;

IF set ='1' THEN state <="'1' AFTER sq_delay;
ELSIF rst = '1' THEN state <="'0' AFTER rq_delay;
ELSIF clk ='1' AND clk'EVENT THEN state <= d AFTER cq_delay;
END IF;

END PROCESS dff;

g <= state; qb <= NOT state;

END behavioral;

10-32

Handshaking ...

7-»data_lines valid data
systemn
A mm data_ready / [
| od L‘ !—lL
system m_accept
B
] BT B
System A System B
-- start the following when ready to -- start the following when
send data ready to accept data

data_lines <= newly_prepared_data; oo
data_ready <="1'; accepted <=1’

WAIT UNTIL accepted = '1"; -- start processing the newly
data_ready <= '0; received data

-- can use data_lines for other purposes

accepted <='0";

WAIT UNTIL data_ready =1

WAIT UNTIL data_ready ='0';

10-33

... Handshaking ...

m Use handshaking mechanism in an interface
A prepares 4 bit data, B needs 16 bit data
Create interface system |

Talk to A to get data, talk to B to put data

—_— 4 —_—
indsta ———> 16
A ey —) > ou_deb
el <—— SYSTEM |, ouemy B
| out_racelved

ENTITY system_i IS

PORT (in_data : IN BIT_VECTOR (3 DOWNTO 0);

out_data : OUT BIT_VECTOR (15 DOWNTO 0);

in_ready, out_received : IN BIT; in_received, out_ready : OUT BIT);
END system_i;

10-34

... Handshaking ...

ARCHITECTURE waiting OF system_i IS

SIGNAL buffer_full, buffer_picked : BIT :='0';
SIGNAL word_buffer : BIT_VECTOR (15 DOWNTO 0);
BEGIN

a_talk: PROCESS

BEGIN

-- Talk to A, collect 4 4-bit data, keep a count
-- When ready, pass 16-bit data to b_talk

END PROCESS a_talk;
b_talk: PROCESS
BEGIN

-- Wait for 16-bit data from a_talk
-- When data is received, send to B using proper
handshaking

END PROCESS b_talk;

«a_talk process &
b_talk process talk to
each other

*Use buffer_full,
buffer_picked, and
word_buffer for a_talk
and b_talk
communication

END waiting; 10-35
... Handshaking ...

A_talk: PROCESS

VARIABLE count : INTEGER RANGE 0 TO 4 :=0;

BEGIN

WAIT UNTIL in_ready ="'1";

count :=count + 1;

CASE count IS

WHEN 0 => NULL;

WHEN 1 => word_buffer (03 DOWNTO 00) <= in_data;

WHEN 2 => word_buffer (07 DOWNTO 04) <= in_data;

WHEN 3 =>word_buffer (11 DOWNTO 08) <= in_data;

WHEN 4 => word_buffer (15 DOWNTO 12) <= in_data;
buffer_full <="1";
WAIT UNTIL buffer_picked ="'1";
buffer_full <='0"; count :=0;

END CASE;

in_received <="'1";

WAIT UNTIL in_ready ='0";

in_received <="'0";

END PROCESS a_talk; 10-36

Handshaking ...

b_talk: PROCESS

BEGIN

-- communicate with a_talk process
IF buffer_full ='0' THEN WAIT UNTIL buffer_full ='1'; END IF;
out_data <=word_buffer;
buffer_picked <="1";

WAIT UNTIL buffer_full ='0";
buffer_picked <="'0";

-- communicate with system B
out_ready <="1";

WAIT UNTIL out_received ="1";
out_ready <="'0";

END PROCESS b_talk;

The IF buffer_full = ‘0’ statement is used so that the WAIT Until
does not hold the process if buffer_full is already ‘1’ when this

statement is reached
10-37

Formatted 1/0O ...

m USE STD.TEXTIO.ALL,;
m |is LINE, fis FILE

m The following functions provided:
® READLINE (f, I)
® READ (I, v)
* WRITE (I, v),
® WRITELINE (f,)
® ENDFILE (f)

m READ or WRITE can read values of type:

® BIT, BIT_VECTOR, BOOLEAN, CHARACTER, INTEGER,
REAL, STRING, TME

10-38

... Formatted I/O ...

TYPE state IS (reset, gotl, got10, got101);

USE STD.TEXTIO.ALL;

VARIABLE | : LINE;

FILE flush : TEXT IS OUT "/dev/tty";

BEGIN

FOR i IN sources'RANGE LOOP

WRITE (I, state’'IMAGE(sources(l)), LEFT, 7);
END LOOP;

WRITELINE (flush, 1);

RETURN sources (sources'LEFT);

END one_of;

TYPE state_vector IS ARRAY (NATURAL RANGE <>) OF state;
FUNCTION one_of (sources : state_vector) RETURN state IS

*Add screen output to resolution function

*The 'IMAGE type attribute translates a state to its corresponding string
*The keyword LEFT specifies left justification

7 specifies the string length

10-39

... Formatted I/O

USE STD.TEXTIO.ALL;

PROCEDURE display (SIGNAL valuel,
value2 : BIT) IS

FILE flush : TEXT OPEN APPEND_MODE

is "debug.txt";

VARIABLE filler : STRING (1 TO 4) :=" ...";
VARIABLE | : LINE;

BEGIN

WRITE (I, NOW, RIGHT, 8, NS);
IF valuel'EVENT THEN
WRITE (I, valuel, RIGHT, 3);
WRITE (I, filler, LEFT, 0);
ELSE

WRITE (I, filler, LEFT, 0);
WRITE (I, value2, RIGHT, 3);
END IF;

WRITELINE (flush, I);

END display;

*An EVENT on valuel or value2
puts the following in I:

NOW
*An EVENT on valuel puts the
following in I:

vl ...
*An EVENT on value2 puts the
following in I:

V2
*WRITELINE writes:

time v1 ...

time ... v2

10-40

