Name:

COE 405, Term 181

Design & Modeling of Digital Systems

Quiz#6 Solution

Date: Sunday, Dec. 9, 2018

- **Q.1.** Fill in the blank in each of the following questions:
 - (1) Three advantages of using FPGAs over ASICs are <u>low development cost</u>, short time to market ad reconfigurability.
 - (2) Two types of FPGA technologies are <u>SRAM-based FPGAs and Flash and Anti-Fuse</u> <u>FPGAs</u>.
 - (3) In FPGAs, each configurable logic block (CLB) has a number of the following two main blocks: <u>look-up tables (LUT) and Flip Flops</u>.
 - (4) Each IOB can be configured to work as <u>uni-directional I/O</u> or <u>bi-directional I/O</u>.
 - (5) Modern FPGAs, in addition to having CLBs and IOBs, have the following components: <u>Block RAMs</u>, <u>Multipliers</u>, <u>Clock Management</u>, <u>Gigabit serial</u>.
 - (6) In FPGAs, memory can be implemented in two ways either as <u>distributed RAM using LUTs</u> or using <u>Block RAM</u>.
 - (7) The difference between simple dual port and true dual port RAM is that is <u>simple dual</u> port ram has one read-only port and one read/write port while in true dual port both ports could be either read or write.
 - (8) To have a RAM with synchronous read, the RAM must be implemented using either <u>distributed RAM (i.e. using LUTs) or using BRAM.</u>

- (9) Using a Block RAM with Read_First write mode means that when the memory is written it will <u>output the previously stored data while new data is being written.</u>
- (10) Using a Block RAM with No_Change write mode means that when the memory is written it will maintain the output previously generated by a read operation.
- **Q.2.** Write a parametrizable Verilog model for modeling a memory with a simple dual port memory with synchronous read and write by completing the following module:

```
module Memory_Unit#(parameter word_size=8, address_size=8, memory_size=256)(
output reg [word_size-1:0] data_out1,
output reg [word_size-1:0] data_out2,
input [word_size-1:0] data_in,
input [address_size-1:0] address1,
input [address_size-1:0] address2,
input clk, write);
```

reg [word_size-1:0] memory[memory_size-1:0];

```
always @ (posedge clk) begin
if (write) memory[address1] <= data_in;
else data_out1 <= memory[address1];
data_out2 <= memory[address2];
end
endmodule
```

Q.3. Consider the logic network defined by the following expression:

$$x = a b d' e' + a' c' d' e' + a b' d + a b' e + a' c d + a' c e$$

Compute the weight of the double cube divisors $d_1 = a b + a' c'$ and $d_2 = d + e$. Extract the double cube divisor with the highest weight and show the resulting network after extraction and the number of literals saved.

Double Cube Divisor	Base
di= ab tac	ਰੇਵ
di= ab +ac	d , e
d2 = d+e	ab, ac
$weight(d_1) = 3 + 4 - 3 - 4 + 2 + 1 + 1 = 9$	
weight $(d_2) = 2 + 2 - 2$	-2 + 2 + 2 + 2 = 6
Since d1 has a higher weight, it will be	
extracted .	
The resulting network after extracting dl is:	
dl = ab + ac	
$x = d \overline{de} + \overline{d} d$	+ die 11 literals
Number of literals saved	= 9,