Name: KEY Id#
COE 405, Term 131
Design & Modeling of Digital Systems
Quiz# 3

Date: Thursday, Nov. 28, 2013

Q.1. It is required to model an n-bit iterative magnitude comparator. A 4-bit comparator is
shown below:

T T i i

=1 0

G CMP1BIT G lep CMP1BIT gl lop CMPABIT 6 lop CMPBIT gRc

A1
Al

The model for a 1-bit comparator is as follows:

F- Be

GPL> BOGN
FDJu
- ﬁ

- LN

Write a parametrizable Verilog model for modeling an n-bit comparator with a default of
n=4.

module comparator #(parameter n=4)(
output reg G, L,

input [n-1:0] &, b);

integer k;

always @ (a, b) begin: compare_loop

G=0;L=0;
for (k=n-1; k>=0; k=k-1) begin
G =G| ak] & ~b[k] & ~L;
L =L |~a[k] & b[k] & ~G;
end

end
endmodule

Q.2.

The ASMD chart given below describes a state machine that counts 1°s in a word and

terminates activity as soon as possible. The machine remains in its reset state, S_idle, until
an external agent asserts start. This action asserts the output, load_temp, which will cause
data to be loaded into register temp when the state makes a transition to S_counting at the
next active edge of clk. The machine remains in S_counting while temp contains a 1. Two
actions occur concurrently at each subsequent clock: (1) temp is shifted towards its LSB
and (2) temp[0] is added to bit_count. When temp finally has a 1 in only the LSB, the
machine’s state moves to S_waiting, where done is asserted. The state remains in
S_waiting until start is reasserted. Assume that when the synchrnous reset input is
asserted the machine is reset to the state S_idle and bit_count and temp are initialized to

0.

(i) Write a Verilog model for modeling the data-path unit.

(if) Write a Verilog model for modeling the control unit using the following state assignment:
S_idle=00, S_counting =01, and S_waiting=10.

data
Datapath_Unit

[word_size-1: 0] |

temp_gt_1
Y load_temp | Y
start => il
| | shift_add .
busy =< Control_Unit > Datapath_lLogic
done < clear
clk AR AA
reset temp_0
- YY Y

> Bit_Counter

=

[counter_size-1: 0]

Y

bit_count

temp <= data

load_temp

bit_count <= bit_count + temp|0

temp <= temp >> 1 \!

YYVy

S_counting

/ busy, shift add

S_wamng
/ done

I

temp <= data

load_temp
clear
A

bit_count <=0

start

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

(i)

module OnesCount_DPU #(parameter word_size=4, counter_size=3)(
output reg [counter_size-1: O] bit_count,

output temp_gt_1,

input [word_size-1:0] data,

input load_temp, shift_add, clear, clock, reset

);
reg [word_size-1:0] temp;
assign temp_gt_1 = | temp[word_size-1:1];
always @ (posedge clock)
if (load_temp) temp <= data;
else if (shift_add) temp <= temp >> 1;
always @ (posedge clock)
if (reset || clear) bit_count <= 0;
else if (shift_add]) bit_count <= bit_count + temp[0];
endmodule
(i)
module OnesCount_CU (output reg load_temp,
shift_add, clear, done, busy,
input start, temp_gt_1, clock, reset);
parameter S_idle = 2'b00, S_counting = 2'b01, S_waiting = 2'b10;
reg [1:0] state, next_state;
always @(posedge clock)
if (reset) state <='S _idle;

else state <= next_state;

always @(state, start, temp_gt_1) begin
load_temp=0; shift_add=0; clear=0; done=0; busy=0;

case (state)

S idle:
if (start) begin
load_temp = 1;
next_state = S_counting;
end

else next_state = S_idle;

S_counting: begin
shift_add = 1; busy = 1,
if (temp_gt_1) next_state = S_counting;
else next_state = S_waiting;
end
S_waiting: begin
done = 1;
if (start) begin
load_temp = 1; clear = 1;
next_state = S_counting;
end
else next_state = S_waiting;
end
default: begin
next_state = 2'bxx;
load_temp="bx; shift_add="bx; clear="bx; done="bx; busy="bx;
end
endcase
end
endmodule

