
Memories
•  Memories in Verilog
•  Memories on the FPGA
•  External Memories

-- SRAM (async, sync)
 -- DRAM

-- Flash

6.111 Fall 2008 1 Lecture 7

Memories: a practical primer

•  The good news: huge selection of technologies
–  Small & faster vs. large & slower
–  Every year capacities go up and prices go down
–  New kid on the block: high density, fast flash memories

•  Non-volatile, read/write, no moving parts! (robust, efficient)
•  The bad news: perennial system bottleneck

–  Latencies (access time) haven’t kept pace with cycle times
–  Separate technology from logic, so must communicate between

 silicon, so physical limitations (# of pins, R’s and C’s and L’s) limit
 bandwidths

•  New hopes: capacitive interconnect, 3D IC’s
–  Likely the limiting factor in cost & performance of many digital

 systems: designers spend a lot of time figuring out how to keep
 memories running at peak bandwidth

–  “It’s the memory, stupid”

6.111 Fall 2008 2 Lecture 7

Memories in Verilog

•  reg bit; // a single register
•  reg [31:0] word; // a 32-bit register
•  reg [31:0] array[15:0]; // 16 32-bit regs

•  wire [31:0] read_data,write_data;
wire [3:0] index;

// combinational (asynch) read
assign read_data = array[index];

// clocked (synchronous) write
always @(posedge clock)
 array[index] <= write_data;

6.111 Fall 2008 3 Lecture 7

Multi-port Memories (aka regfiles)
reg [31:0] regfile[30:0]; // 31 32-bit words

// Beta register file: 2 read ports, 1 write
wire [4:0] ra1,ra2,wa;
wire [31:0] rd1,rd2,wd;

assign ra1 = inst[20:16];
assign ra2 = ra2sel ? inst[25:21] : inst[15:11];
assign wa = wasel ? 5'd30 : inst[25:21];

// read ports
assign rd1 = (ra1 == 5’d31) ? 32’d0 : regfile[ra1];
assign rd2 = (ra2 == 5’d31) ? 32’d0 : regfile[ra2];
// write port
always @(posedge clk)
 if (werf) regfile[wa] <= wd;

assign z = ~| rd1; // used in BEQ/BNE instructions

6.111 Fall 2008 4 Lecture 7

FIFOs

// a simple synchronous FIFO (first-in first-out) buffer
// Parameters:
// LOGSIZE (parameter) FIFO has 1<<LOGSIZE elements
// WIDTH (parameter) each element has WIDTH bits
// Ports:
// clk (input) all actions triggered on rising edge
// reset (input) synchronously empties fifo
// din (input, WIDTH bits) data to be stored
// wr (input) when asserted, store new data
// full (output) asserted when FIFO is full
// dout (output, WIDTH bits) data read from FIFO
// rd (input) when asserted, removes first element
// empty (output) asserted when fifo is empty
// overflow (output) asserted when WR but no room, cleared on next RD
module fifo #(parameter LOGSIZE = 2, // default size is 4 elements
 WIDTH = 4) // default width is 4 bits
 (input clk,reset,wr,rd, input [WIDTH-1:0] din,
 output full,empty,overflow, output [WIDTH-1:0] dout);
…
endmodule

din

clk

wr

full

reset

FIFO

1<<LOGSIZE
locations

dout

empty

overflow

rd

WIDTH WIDTH

6.111 Fall 2008 5 Lecture 7

FIFOs in action
// make a fifo with 8 8-bit locations
fifo #(.LOGSIZE(3),.WIDTH(8))
 f8x8(.clk(clk),.reset(reset),
 .wr(wr),.din(din),.full(full),
 .rd(rd),.dout(dout),.empty(empty),
 .overflow(overflow));

6.111 Fall 2008 6 Lecture 7

FPGA memory implementation

•  Regular registers in logic blocks
–  Piggy use of resources, but convenient & fast if small

•  [Xilinx Vertex II] use the LUTs:
–  Single port: 16x(1,2,4,8), 32x(1,2,4,8), 64x(1,2), 128x1
–  Dual port (1 R/W, 1R): 16x1, 32x1, 64x1
–  Can fake extra read ports by cloning memory: all clones are written

 with the same addr/data, but each clone can have a different read
 address

•  [Xilinx Vertex II] use block ram:
–  18K bits: 16Kx1, 8Kx2, 4Kx4

with parity: 2Kx(8+1), 1Kx(16+2), 512x(32+4)
–  Single or dual port
–  Pipelined (clocked) operations
–  Labkit XCV2V6000: 144 BRAMs, 2952K bits total

6.111 Fall 2008 7 Lecture 7

LUT-based RAMs

6.111 Fall 2008 8 Lecture 7

LUT-based RAM Modules

// instantiate a LUT-based RAM module
RAM16X1S mymem #(.INIT(16’b01101111001101011100)) // msb first
 (.D(din),.O(dout),.WE(we),.WCLK(clock_27mhz),
 .A0(a[0]),.A1(a[1]),.A2(a[2]),.A3(a[3]));

6.111 Fall 2008 9 Lecture 7

Tools will often build these for you…

 reg [7:0] segments;
 always @ (switch[3:0]) begin
 case (switch[3:0])
 4'h0: segments[6:0] = 7'b0111111;
 4'h1: segments[6:0] = 7'b0000110;
 4'h2: segments[6:0] = 7'b1011011;
 4'h3: segments[6:0] = 7'b1001111;
 4'h4: segments[6:0] = 7'b1100110;
 4'h5: segments[6:0] = 7'b1101101;
 4'h6: segments[6:0] = 7'b1111101;
 4'h7: segments[6:0] = 7'b0000111;
 4'h8: segments[6:0] = 7'b1111111;
 4'h9: segments[6:0] = 7'b1100111;
 4'hA: segments[6:0] = 7'b1110111;
 4'hB: segments[6:0] = 7'b1111100;
 4'hC: segments[6:0] = 7'b1011000;
 4'hD: segments[6:0] = 7'b1011110;
 4'hE: segments[6:0] = 7'b1111001;
 4'hF: segments[6:0] = 7'b1110001;
 default: segments[6:0] = 7'b00000000;
 endcase
 segments[7] = 1'b0; // decimal point
 end

===
* HDL Synthesis *
===

Synthesizing Unit <lab2_2>.
 Related source file is "../lab2_2.v".
 ...

 Found 16x7-bit ROM for signal <$n0000>.
 ...
 Summary:

 inferred 1 ROM(s).
 ...
Unit <lab2_2> synthesized.

===
Timing constraint: Default path analysis
Total number of paths / destination ports: 28 / 7

Delay: 7.244ns (Levels of Logic = 3)
Source: switch<3> (PAD)
Destination: user1<0> (PAD)

Data Path: switch<3> to user1<0>
 Gate Net
Cell:in->out fanout Delay Delay Logical Name
--------------------------------- ------------
IBUF:I->O 7 0.825 1.102 switch_3_IBUF
LUT4:I0->O 1 0.439 0.517 Mrom__n0000_inst_lut4_01
OBUF:I->O 4.361 user1_0_OBUF

Total 7.244ns (5.625ns logic, 1.619ns route)
 (77.7% logic, 22.3% route)

From Lab 2:

6.111 Fall 2008 10 Lecture 7

Block Memories (BRAMs)

(WDATA + WPARITY)*(LOCATIONS) = 18K bits

1
2
4
8
16
32

1,2,4 16K,8K,4K,2K,1K,512

6.111 Fall 2008 11 Lecture 7

BRAM Operation

Source: Xilinx App Note 463

BRAM
Single-port

Config.
CLK
WE

Address

Data_in Data_out

6.111 Fall 2008 12 Lecture 7

BRAM timing

6.111 Fall 2008 13 Lecture 7

Using BRAMs (eg, a 64Kx8 ram)

•  From menus: Project → New Source…

Select “IP”
Fill in name

Click “Next” when done…
6.111 Fall 2008 14 Lecture 7

BRAM Example

Click open folders

Select “Single Port Block
Memory”

Click “Next” and then “Finish” on next window

6.111 Fall 2008 15 Lecture 7

BRAM Example

Fill in name
(again?!)

Select RAM vs
ROM

Click “Next” …

Fill in width
& depth

Usually “Read After
Write” is what you
want

6.111 Fall 2008 16 Lecture 7

BRAM Example

Click “Next” …

Can add extra
control pins, but
usually not

6.111 Fall 2008 17 Lecture 7

BRAM Example

Click “Next” …

Select polarity of
control pins; active
high default is
usually just fine

6.111 Fall 2008 18 Lecture 7

BRAM Example

Click “Generate” to complete

Click to name a .coe
file that specifies
initial contents (eg,
for a ROM)

6.111 Fall 2008 19 Lecture 7

.coe file format
memory_initialization_radix=2;
memory_initialization_vector=

00000000,
00111110,
01100011,
00000011,
00000011,
00011110,
00000011,
00000011,
01100011,
00111110,
00000000,
00000000,

Memory contents with location 0 first, then
location 1, etc. You can specify input radix, in
this example we’re using binary. MSB is on
the left, LSB on the right. Unspecified
locations (if memory has more locations than
given in .coe file) are set to 0.

6.111 Fall 2008 20 Lecture 7

Using result in your Verilog

•  Look at generated Verilog for module def’n:

module ram64x8 (addr,clk,din,dout,we);
 input [15 : 0] addr;
 input clk;
 input [7 : 0] din;
 output [7 : 0] dout;
 input we;
 …
endmodule

•  Use to instantiate instances in your code:

ram64x8 foo(.addr(addr),.clk(clk),.we(we),
 .din(din),.dout(dout));

6.111 Fall 2008 21 Lecture 7

Memory Classification & Metrics

Key Design Metrics:
1.  Memory Density (number of bits/mm2) and Size
2.  Access Time (time to read or write) and Throughput
3.  Power Dissipation

Read-Write
Memory Non-Volatile

Read-Write
Memory

Read-Only
Memory Random

Access Sequential
Access

SRAM
DRAM FIFO

EPROM
E2PROM
FLASH

Mask-
Programmed

ROM

6.111 Fall 2008 22 Lecture 7

D Q
D Q

Static RAMs: Latch Based Memory

Register Memory

 Works fine for small memory blocks (e.g., small register files)
  Inefficient in area for large memories
 Density is the key metric in large memory circuits

How do we minimize cell size?

S
 Q

R
 Q

Q

Set Reset Flip Flop

D
D Q

D Q
D Q

D Q

Address

6.111 Fall 2008 23 Lecture 7

Memory Array Architecture

Input-Output
(M bits)

2 L-K Bit Line

Word Line

Storage Cell

M*2K

Amplify swing to
rail-to-rail amplitude

Selects appropriate word
(i.e., multiplexer)

Sense Amps/Driver

Column Decode A0

AK-1

Row D
ecode

AK
AK+1

AL-1

2L-K row
by

Mx2K column
cell array

Small cells → small mosfets → small dV on bit line 2LxM memory

6.111 Fall 2008 24 Lecture 7

Static RAM (SRAM) Cell (The 6-T Cell)

WL

BL

V DD

M 5 M 6

M 4

M 1

M 2

M 3

BL

Q
Q

  State held by cross-coupled inverters (M1-M4)
  Retains state as long as power supply turned on
  Feedback must be overdriven to write into the memory

WL
BL BL

Q Q

Write: Set BL, BL to (0,VDD)
or (VDD,0) then enable WL (= VDD)

Read: Disconnect drivers from BL
 and BL, then enable WL (=VDD).
 Sense a small change in BL or BL

6.111 Fall 2008 25 Lecture 7

Using External Memory Devices

•  Address pins drive row and column
 decoders

•  Data pins are bidirectional: shared
 by reads and writes

•  Output Enable gates the
chip’s tristate driver

•  Write Enable sets the
memory’s read/write mode

•  Chip Enable/Chip Select acts
as a “master switch”

Memory Matrix …

…

Data
 Pins

Read
Logic

Write
Logic

Row D
ecoder

Address
 Pins

Sense Amps/Drivers
Column Decoder

Write enable
Chip Enable

Output
 Enable

Tri-state Driver

in out

enable

If enable=0
out = Z

If enable =1
out = in

Write enable

Concept of “Data Bus”
6.111 Fall 2008 26 Lecture 7

MCM6264C 8K x 8 Static RAM

DQ[7:0]

Memory matrix
256 rows
32 Column

Ro
w

D
ec

od
er

Column Decoder
Sense Amps/Drivers

…

…

A2
A3
A4
A5
A7
A8
A9
A11

A
0 A
1

A
6

A
10

A

12

E1
E2

W
G

MCM6264C

Address

Data
DQ[7:0]

13

8
Chip Enables E1

E2

Write Enable WE

Output Enable OE

On the outside:

On the inside:

Pinout

Same (bidirectional) data bus used
 for reading and writing

Chip Enables (E1 and E2)
E1 must be low and E2 must be
 high to enable the chip

Write Enable (WE)
When low (and chip enabled),
 values on data bus are written to
 location selected by address bus

Output Enable (OE or G)
When low (and chip is enabled),
 data bus is driven with value of
 selected memory location

6.111 Fall 2008 27 Lecture 7

Bus tristate time

Reading an Asynchronous SRAM

•  Read cycle begins when all enable signals (E1, E2, OE) are active

•  Data is valid after read access time
–  Access time is indicated by full part number: MCM6264CP-12  12ns

•  Data bus is tristated shortly after OE or E1 goes high

Address

E1

OE

Data

Address Valid

Data Valid

Access time (from address valid)

Access time (from enable low)

Bus enable time
(Tristate)

E2 assumed high (enabled), W =1 (read mode)

6.111 Fall 2008 28 Lecture 7

Bus tristate
 time

Address Controlled Reads

•  Can perform multiple reads without disabling chip
•  Data bus follows address bus, after some delay

Address

E1

OE

Data

Access time (from address valid)

Bus enable
 time

E2 assumed high (enabled), WE =1 (read mode)

Address 3 Address 2 Address 1

Data
 2

Data
 3

Data
 1

Contamination time

6.111 Fall 2008 29 Lecture 7

Writing to Asynchronous SRAM

•  Data latched when WE or E1 goes high (or E2 goes low)
–  Data must be stable at this time
–  Address must be stable before WE goes low

•  Write waveforms are more important than read waveforms
–  Glitches to address can cause writes to random addresses!

Address

E1

WE

Data

Address Valid
Address setup time

Write pulse width

Data setup
 time

E2 and OE are held high

Data Valid
Data hold time

Address hold time

6.111 Fall 2008 30 Lecture 7

Sample Memory Interface Logic

Clock/E1
OE
WE

Address
Data Data for write

Address for write Address for read

Data read

Write occurs here,
 when E1 goes high

Data can be
 latched

 here
Drive data bus only when

 clock is low
–  Ensures address are

 stable for writes
–  Prevents bus

 contention
–  Minimum clock period

 is twice memory
 access time

Write cycle Read cycle

FSM

Clock

D Q

Address
Read data

Write
 data

Control
(write, read,

 reset)
Data[7:0]

Address[12:0]

 W
 G

 E1
SRAM

 E2

 VCC

ext_chip_enable
ext_write_enable
ext_output_enable

ext_address

ext_data
QD

QD

int_data

FPGA

6.111 Fall 2008 31 Lecture 7

Tristate Data Buses in Verilog

D Q Read data

Write data

CE (active low)

OE (active_low)

ext_data Q D

int_data

output CE,OE; // these signals are active low
inout [7:0] ext_data;
reg [7:0] read_data,int_data
wire [7:0] write_data;

always @(posedge clk) begin
 int_data <= write_data;
 read_data <= ext_data;
end

// Use a tristate driver to set ext_data to a value
assign ext_data = (~CE & OE) ? int_data : 8’hZZ;

clk

6.111 Fall 2008 32 Lecture 7

Synchronous SRAM Memories

Data
 Pins

Read
Logic

Write
Logic

Write Enable
Chip Enable

Output Enable

•  Clocking provides input synchronization and encourages more
 reliable operation at high speeds

Memory
matrix

…

…

Row D
ecoder

Address
 Pins

Sense Amps/Drivers
Column Decoder

W3

A3
D3

CE

WE

CLK

Address

Data

R1

A1

R2 W5 R4

A2 A4 A5
Q1 Q2 Q4 D5

difference between read and write timings
 creates wasted cycles (“wait states”)

long “flow-through”
 combinational path creates high

 CLK-Q delay

6.111 Fall 2008 33 Lecture 7

ZBT Eliminates the Wait State
•  The wait state occurs because:

–  On a read, data is available after the clock edge
–  On a write, data is set up before the clock edge

•  ZBT (“zero bus turnaround”) memories change the rules for writes
–  On a write, data is set up after the clock edge

(so that it is read on the following edge)
–  Result: no wait states, higher memory throughput

CE
WE
CLK

Address

Data

A1 A2 A3 A4 A5
Q1 Q2 D3 Q4 D5

W3 R1 R2 W5 R4

Write to A3
requested

Data D3
loaded

Write to A5
requested

Data D5
loaded

6.111 Fall 2008 34 Lecture 7

Pipelining Allows Faster CLK
•  Pipeline the memory by registering its output

–  Good: Greatly reduces CLK-Q delay, allows higher clock (more throughput)
–  Bad: Introduces an extra cycle before data is available (more latency)

Data
 Pins

Read
Logic

Write Enable
Chip Enable

Output Enable

Memory
matrix

…

…

Row D
ecoder

Address
 Pins

Sense Amps/Drivers
Column Decoder

pipelining register

CE
WE
CLK

Address
Data

A1 A2 A3 A4 A5
Q1 Q2 D3 Q4 D5

W3 R1 R2 W5 R4

one-cycle
latency... (ZBT write to A3) (ZBT write to A5)

ZBT
Write
Logic

As an example, see
the CY7C147X ZBT
Synchronous SRAM

6.111 Fall 2008 35 Lecture 7

EEPROM

Removing programming
voltage leaves charge trapped

0 V

5 V 0 V

D S

20 V

10 V 5 V 20 V

D S
Avalanche injection

[Rabaey03]

This is a non-volatile memory (retains state when supply turned off)

Electrically Erasable Programmable Read-Only Memory

Intel
EEPROM – The Floating Gate Transistor

Floating
gate

Usage: Just like SRAM, but writes are much slower than reads
(write sequence is controlled by an FSM internal to chip)

Common application: configuration data (serial EEPROM)
6.111 Fall 2008 36 Lecture 7

Interacting with Flash and (E)EPROM

•  Reading from flash or (E)EPROM is the same as reading from SRAM
•  Vpp: input for programming voltage (12V)

–  EPROM: Vpp is supplied by programming machine
–  Modern flash/EEPROM devices generate 12V using an on-chip charge pump

•  EPROM lacks a write enable
–  Not in-system programmable (must use a special programming machine)

•  For flash and EEPROM, write sequence is controlled by an internal FSM
–  Writes to device are used to send signals to the FSM
–  Although the same signals are used, one can’t write to flash/EEPROM in the same

 manner as SRAM

Address Data

Chip Enable

Output Enable

Write Enable FSM

Vcc (5V)

Programming
 voltage (12V)

Charge
 pump

Flash/EEPROM block diagram

EPROM omits
 FSM, charge

 pump, and
 write enable

6.111 Fall 2008 37 Lecture 7

Dynamic RAM (DRAM) Cell

WL

X

BL
VDD/2

VDD

GND

Write "1" Read "1"

sensing
VDD/2

  DRAM relies on charge stored in a capacitor to hold state
  Found in all high density memories (one bit/transistor)
  Must be “refreshed” or state will be lost – high overhead

DRAM uses
 Special

 Capacitor
 Structures

To Write: set Bit Line (BL) to 0 or VDD
& enable Word Line (WL) (i.e., set to VDD)

To Read: set Bit Line (BL) to VDD /2
& enable Word Line (i.e., set it to VDD)

Cell Plate Si
Capacitor Insulator
Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

[Rabaey03]

CS
M1

BLWL

CBL

6.111 Fall 2008 38 Lecture 7

Asynchronous DRAM Operation

•  Clever manipulation of RAS and CAS after reads/writes provide
 more efficient modes: early-write, read-write, hidden-refresh, etc.
(See datasheets for details)

Address

RAS

CAS

Data

WE

Row

Q (data from RAM)

Col

RAS-before-CAS
for a read or write

(Row and column addresses taken
 on falling edges of RAS and CAS)

(Tristate)

CAS-before-RAS
for a refresh

set high/low before
 asserting CAS

6.111 Fall 2008 39 Lecture 7

Addressing with Memory Maps
•  Address decoder selects memory

–  Example: ‘138 3-to-8 decoder
–  Produces enable signals

•  SRAM-like interface often used
 for peripherals

–  Known as “memory mapped”
 peripherals

D
at

a[
7:

0]

A
dd

re
ss

[1
2:

0]

~W

~G

~E
1

SRAM 1

‘13
8

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

C
B
A

~G2B
~G2A

G1

D
at

a[
7:

0]

A
dd

re
ss

[1
2:

0]

~W

~G

~E
1

SRAM 2

D
at

a[
7:

0]

A
dd

re
ss

[1
2:

0]

~G

~E
1

EPROM

[1
2:

0]

[1
2:

0]

[1
2:

0]

13
14
15

Address[15:0]

WE
OE

Data[7:0]

D
at

a[
7:

0]
A

dd
re

ss
[2

:0
]

~W

~G

~E
1

ADC

EPROM
SRAM 2
SRAM 1

0xFFFF

0xE000
0xDFFF

0xC000
0xBFFF

0xA000
0x9FFF

0x0000

[2
:0

]

ADC
0x2000
0x1FFF

Memory Map

Bus Enable
+5V

Analog
 Input

6.111 Fall 2008 40 Lecture 7

Memory Devices: Helpful Knowledge

•  SRAM vs. DRAM
–  SRAM holds state as long as power supply is turned on. DRAM

 must be “refreshed” – results in more complicated control
–  DRAM has much higher density, but requires special capacitor

 technology.
–  FPGA usually implemented in a standard digital process

 technology and uses SRAM technology
•  Non-Volatile Memory

–  Fast Read, but very slow write (EPROM must be removed from
 the system for programming!)

–  Holds state even if the power supply is turned off
•  Memory Internals

–  Has quite a bit of analog circuits internally -- pay particular
 attention to noise and PCB board integration

•  Device details
–  Don’t worry about them, wait until 6.012 or 6.374

6.111 Fall 2008 41 Lecture 7

You Should Understand Why…
•  control signals such as Write Enable should be registered
•  a multi-cycle read/write is safer from a timing perspective

 than the single cycle read/write approach
•  it is a bad idea to enable two tri-states driving the bus at the

 same time
•  an SRAM does not need to be “refreshed” while a DRAM

 requires refresh
•  an EPROM/EEPROM/FLASH cell can hold its state even if the

 power supply is turned off
•  a synchronous memory can result in higher throughput

6.111 Fall 2008 42 Lecture 7

