
Memories 
•  Memories in Verilog 
•  Memories on the FPGA 
•  External Memories 

-- SRAM (async, sync) 
   -- DRAM 

-- Flash 
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Memories: a practical primer 

•  The good news: huge selection of technologies 
–  Small & faster vs. large & slower 
–  Every year capacities go up and prices go down 
–  New kid on the block: high density, fast flash memories 

•  Non-volatile, read/write, no moving parts! (robust, efficient) 
•  The bad news: perennial system bottleneck 

–  Latencies (access time) haven’t kept pace with cycle times 
–  Separate technology from logic, so must communicate between

 silicon, so physical limitations (# of pins, R’s and C’s and L’s) limit
 bandwidths 

•  New hopes: capacitive interconnect, 3D IC’s 
–  Likely the limiting factor in cost & performance of many digital

 systems: designers spend a lot of time figuring out how to keep
 memories running at peak bandwidth 

–  “It’s the memory, stupid” 
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Memories in Verilog 

•  reg bit;  // a single register 
•  reg [31:0] word;   // a 32-bit register 
•  reg [31:0] array[15:0];  // 16 32-bit regs 

•  wire [31:0] read_data,write_data; 
wire [3:0] index; 

// combinational (asynch) read 
assign read_data = array[index]; 

// clocked (synchronous) write 
always @(posedge clock) 
    array[index] <= write_data; 
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Multi-port Memories (aka regfiles) 
reg [31:0] regfile[30:0]; // 31 32-bit words 

// Beta register file: 2 read ports, 1 write 
wire [4:0] ra1,ra2,wa; 
wire [31:0] rd1,rd2,wd; 

assign ra1 = inst[20:16]; 
assign ra2 = ra2sel ? inst[25:21] : inst[15:11]; 
assign wa = wasel ? 5'd30 : inst[25:21]; 

// read ports 
assign rd1 = (ra1 == 5’d31) ? 32’d0 : regfile[ra1];  
assign rd2 = (ra2 == 5’d31) ? 32’d0 : regfile[ra2]; 
// write port 
always @(posedge clk) 
  if (werf) regfile[wa] <= wd; 

assign z = ~| rd1;   // used in BEQ/BNE instructions 
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FIFOs 

// a simple synchronous FIFO (first-in first-out) buffer 
// Parameters: 
//    LOGSIZE  (parameter) FIFO has 1<<LOGSIZE elements 
//    WIDTH    (parameter) each element has WIDTH bits 
// Ports: 
//    clk      (input) all actions triggered on rising edge 
//    reset    (input) synchronously empties fifo 
//    din      (input, WIDTH bits) data to be stored 
//    wr       (input) when asserted, store new data 
//    full     (output) asserted when FIFO is full 
//    dout     (output, WIDTH bits) data read from FIFO 
//    rd       (input) when asserted, removes first element 
//    empty    (output) asserted when fifo is empty 
//    overflow (output) asserted when WR but no room, cleared on next RD 
module fifo #(parameter LOGSIZE = 2,   // default size is 4 elements 
                        WIDTH = 4)     // default width is 4 bits 
            (input clk,reset,wr,rd, input [WIDTH-1:0] din, 
             output full,empty,overflow, output [WIDTH-1:0] dout); 
… 
endmodule 

din 

clk 

wr 

full 

reset 

FIFO 

1<<LOGSIZE 
locations 

dout 

empty 

overflow 

rd 

WIDTH WIDTH 
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FIFOs in action 
// make a fifo with 8 8-bit locations 
fifo  #(.LOGSIZE(3),.WIDTH(8)) 
      f8x8(.clk(clk),.reset(reset), 
           .wr(wr),.din(din),.full(full), 
           .rd(rd),.dout(dout),.empty(empty), 
           .overflow(overflow)); 
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FPGA memory implementation 

•  Regular registers in logic blocks 
–  Piggy use of resources, but convenient & fast if small 

•  [Xilinx Vertex II] use the LUTs: 
–  Single port: 16x(1,2,4,8), 32x(1,2,4,8), 64x(1,2), 128x1 
–  Dual port (1 R/W, 1R): 16x1, 32x1, 64x1 
–  Can fake extra read ports by cloning memory: all clones are written

 with the same addr/data, but each clone can have a different read
 address 

•  [Xilinx Vertex II] use block ram: 
–  18K bits: 16Kx1, 8Kx2, 4Kx4 

with parity: 2Kx(8+1), 1Kx(16+2), 512x(32+4) 
–  Single or dual port 
–  Pipelined (clocked) operations 
–  Labkit XCV2V6000: 144 BRAMs, 2952K bits total 

6.111 Fall 2008 7 Lecture 7 



LUT-based RAMs 
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LUT-based RAM Modules 

// instantiate a LUT-based RAM module  
RAM16X1S mymem #(.INIT(16’b01101111001101011100))  // msb first 
               (.D(din),.O(dout),.WE(we),.WCLK(clock_27mhz), 
                .A0(a[0]),.A1(a[1]),.A2(a[2]),.A3(a[3])); 
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Tools will often build these for you… 

  reg [7:0] segments; 
  always @ (switch[3:0]) begin 
    case (switch[3:0]) 
    4'h0: segments[6:0] = 7'b0111111; 
    4'h1: segments[6:0] = 7'b0000110; 
    4'h2: segments[6:0] = 7'b1011011; 
    4'h3: segments[6:0] = 7'b1001111; 
    4'h4: segments[6:0] = 7'b1100110; 
    4'h5: segments[6:0] = 7'b1101101; 
    4'h6: segments[6:0] = 7'b1111101; 
    4'h7: segments[6:0] = 7'b0000111; 
    4'h8: segments[6:0] = 7'b1111111; 
    4'h9: segments[6:0] = 7'b1100111; 
    4'hA: segments[6:0] = 7'b1110111; 
    4'hB: segments[6:0] = 7'b1111100; 
    4'hC: segments[6:0] = 7'b1011000; 
    4'hD: segments[6:0] = 7'b1011110; 
    4'hE: segments[6:0] = 7'b1111001; 
    4'hF: segments[6:0] = 7'b1110001; 
    default: segments[6:0] = 7'b00000000; 
    endcase 
    segments[7] = 1'b0;  // decimal point 
  end 

============================================= 
*            HDL Synthesis                  * 
============================================= 

Synthesizing Unit <lab2_2>. 
    Related source file is "../lab2_2.v". 
    ... 

    Found 16x7-bit ROM for signal <$n0000>. 
    ... 
    Summary: 

 inferred   1 ROM(s). 
        ... 
Unit <lab2_2> synthesized. 

============================================= 
Timing constraint: Default path analysis 
Total number of paths / destination ports: 28 / 7 
------------------------------------------------- 
Delay:               7.244ns (Levels of Logic = 3) 
Source:            switch<3> (PAD) 
Destination:       user1<0> (PAD) 

Data Path: switch<3> to user1<0> 
                    Gate     Net 
Cell:in->out fanout Delay   Delay  Logical Name 
---------------------------------  ------------ 
IBUF:I->O       7   0.825   1.102  switch_3_IBUF 
LUT4:I0->O      1   0.439   0.517  Mrom__n0000_inst_lut4_01 
OBUF:I->O           4.361          user1_0_OBUF 
--------------------------------------- 
Total               7.244ns (5.625ns logic, 1.619ns route) 
                            (77.7% logic, 22.3% route) 

From Lab 2: 
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Block Memories (BRAMs) 

(WDATA + WPARITY)*(LOCATIONS) = 18K bits 

1 
2 
4 
8 
16 
32 

1,2,4 16K,8K,4K,2K,1K,512 
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BRAM Operation 

Source: Xilinx App Note 463 

BRAM 
Single-port 

Config. 
CLK 
WE 

Address 

Data_in Data_out 
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BRAM timing 
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Using  BRAMs (eg, a 64Kx8 ram) 

•  From menus:  Project → New Source… 

Select “IP” 
Fill in name 

Click “Next” when done… 
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BRAM Example 

Click open folders 

Select “Single Port Block 
Memory” 

Click “Next” and then “Finish” on next window 
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BRAM Example 

Fill in name 
(again?!) 

Select RAM vs 
ROM 

Click “Next” … 

Fill in width 
& depth 

Usually “Read After 
Write” is what you 
want 
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BRAM Example 

Click “Next” … 

Can add extra 
control pins, but 
usually not 
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BRAM Example 

Click “Next” … 

Select polarity of 
control pins; active 
high default is 
usually just fine 
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BRAM Example 

Click “Generate” to complete 

Click to name a .coe 
file that specifies 
initial contents (eg, 
for a ROM) 
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.coe file format 
memory_initialization_radix=2; 
memory_initialization_vector= 

00000000, 
00111110, 
01100011, 
00000011, 
00000011, 
00011110, 
00000011, 
00000011, 
01100011, 
00111110, 
00000000, 
00000000, 

Memory contents with location 0 first, then 
location 1, etc.  You can specify input radix, in 
this example we’re using binary.  MSB is on 
the left, LSB on the right.  Unspecified 
locations (if memory has more locations than 
given in .coe file) are set to 0. 
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Using result in your Verilog 

•  Look at generated Verilog for module def’n: 

module ram64x8 (addr,clk,din,dout,we); 
   input [15 : 0] addr; 
   input clk; 
   input [7 : 0] din; 
   output [7 : 0] dout; 
   input we; 
   … 
endmodule 

•  Use to instantiate instances in your code: 

ram64x8 foo(.addr(addr),.clk(clk),.we(we), 
            .din(din),.dout(dout)); 
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Memory Classification & Metrics 

Key Design Metrics: 
1.  Memory Density (number of bits/mm2) and Size 
2.  Access Time (time to read or write) and Throughput  
3.  Power Dissipation 

Read-Write 
Memory Non-Volatile 

Read-Write 
Memory 

Read-Only 
Memory Random 

Access Sequential 
Access 

SRAM 
DRAM FIFO 

EPROM 
E2PROM 
FLASH 

Mask-
Programmed 

ROM 
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D Q 
D Q 

Static RAMs: Latch Based Memory 

Register Memory 

 Works fine for small memory blocks (e.g., small register files) 
  Inefficient in area for large memories  
 Density is the key metric in large memory circuits 

How do we minimize cell size? 

S
 Q


R
 Q


Q 

Set Reset Flip Flop 

D 
D Q 

D Q 
D Q 

D Q 

Address 
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Memory Array Architecture 

Input-Output 
(M bits) 

2 L-K Bit Line 

Word Line 

Storage Cell 

M*2K 

Amplify swing to 
rail-to-rail amplitude 

Selects appropriate word 
(i.e., multiplexer) 

Sense Amps/Driver 

Column Decode A0 

AK-1 

Row D
ecode 

AK 
AK+1 

AL-1 

2L-K row  
by 

Mx2K column  
cell array 

Small cells → small mosfets → small dV on bit line 2LxM memory 
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Static RAM (SRAM) Cell (The 6-T Cell) 

WL 

BL 

V DD 

M 5 M 6 

M 4 

M 1 

M 2 

M 3 

BL 

Q 
Q 

  State held by cross-coupled inverters (M1-M4) 
  Retains state as long as power supply turned on 
  Feedback must be overdriven to write into the memory 

WL 
BL BL 

Q Q 

Write: Set BL, BL to (0,VDD ) 
or (VDD,0) then enable WL (= VDD) 

Read: Disconnect drivers from BL
 and BL, then enable WL (=VDD).
 Sense a small change in BL or BL 
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Using External Memory Devices 

•  Address pins drive row and column
 decoders 

•  Data pins are bidirectional: shared
 by reads and writes 

•  Output Enable gates the 
chip’s tristate driver 

•  Write Enable sets the 
memory’s read/write mode 

•  Chip Enable/Chip Select acts 
as a “master switch” 

Memory Matrix … 

… 

Data
 Pins 

Read 
Logic 

Write 
Logic 

Row D
ecoder 

Address
 Pins 

Sense Amps/Drivers 
Column Decoder 

Write enable 
Chip Enable 

Output
 Enable 

Tri-state Driver 

in out 

enable 

If enable=0 
out = Z 

If enable =1 
out = in 

Write enable 

Concept of “Data Bus” 
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MCM6264C 8K x 8 Static RAM 

DQ[7:0] 

Memory matrix 
256 rows 
32 Column 

Ro
w 

D
ec

od
er

 

Column Decoder 
Sense Amps/Drivers 

… 

… 

A2 
A3 
A4 
A5 
A7 
A8 
A9 
A11 

A
0 A
1 

A
6 

A
10

 
A

12
 

E1 
E2 

W
G 

MCM6264C 

Address 

Data 
DQ[7:0] 

13 

8 
Chip Enables E1 

E2 

Write Enable WE 

Output  Enable OE 

On the outside: 

On the inside: 

Pinout 

Same (bidirectional) data bus used
 for reading and writing 

Chip Enables (E1 and E2) 
E1 must be low and E2 must be
 high to enable the chip 

Write Enable (WE) 
When low (and chip enabled),
 values on data bus are written to
 location selected by address bus 

Output Enable (OE or G) 
When low (and chip is enabled),
 data bus is driven with value of
 selected memory location  
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Bus tristate time 

Reading an Asynchronous SRAM 

•  Read cycle begins when all enable signals (E1, E2, OE) are active  

•  Data is valid after read access time 
–  Access time is indicated by full part number: MCM6264CP-12  12ns 

•  Data bus is tristated shortly after OE or E1 goes high 

Address 

E1 

OE 

Data 

Address Valid 

Data Valid 

Access time (from address valid) 

Access time (from enable low) 

Bus enable time 
(Tristate) 

E2 assumed high (enabled), W =1 (read mode) 
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Bus tristate
 time 

Address Controlled Reads 

•  Can perform multiple reads without disabling chip 
•  Data bus follows address bus, after some delay  

Address 

E1 

OE 

Data 

Access time (from address valid) 

Bus enable
 time 

E2 assumed high (enabled), WE =1 (read mode) 

Address 3 Address 2 Address 1 

Data
 2 

Data
 3 

Data
 1 

Contamination time 
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Writing to Asynchronous SRAM 

•  Data latched when WE or E1 goes high (or E2 goes low) 
–  Data must be stable at this time 
–  Address must be stable before WE goes low 

•  Write waveforms are more important than read waveforms 
–  Glitches to address can cause writes to random addresses! 

Address 

E1 

WE 

Data 

Address Valid 
Address setup time 

Write pulse width 

Data setup
 time 

E2 and OE are held high 

Data Valid 
Data hold time 

Address hold time 
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Sample Memory Interface Logic 

Clock/E1 
OE 
WE 

Address 
Data Data for write 

Address for write Address for read 

Data read 

Write occurs here,
 when E1 goes high 

Data can be
 latched

 here 
Drive data bus only when

 clock is low 
–  Ensures address are

 stable for writes 
–  Prevents bus

 contention 
–  Minimum clock period

 is twice memory
 access time 

Write cycle Read cycle 

FSM 

Clock 

D Q

Address 
Read data 

Write
 data 

Control 
(write, read,

 reset) 
Data[7:0] 

Address[12:0] 

  W 
  G 

  E1 
SRAM 

 E2 

 VCC 

ext_chip_enable 
ext_write_enable 
ext_output_enable 

ext_address 

ext_data 
QD 

QD 

int_data 

FPGA 
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Tristate Data Buses in Verilog 

D Q Read data 

Write data 

CE (active low) 

OE (active_low) 

ext_data Q D 

int_data 

output CE,OE;  // these signals are active low 
inout [7:0] ext_data; 
reg [7:0] read_data,int_data 
wire [7:0] write_data; 

always @(posedge clk) begin 
  int_data <= write_data; 
  read_data <= ext_data; 
end 

// Use a tristate driver to set ext_data to a value 
assign ext_data = (~CE & OE) ? int_data : 8’hZZ; 

clk 
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Synchronous SRAM Memories 

Data
 Pins 

Read 
Logic 

Write 
Logic 

Write Enable 
Chip Enable 

Output Enable 

•  Clocking provides input synchronization and encourages more
 reliable operation at high speeds 

Memory 
matrix 

… 

… 

Row D
ecoder 

Address
 Pins 

Sense Amps/Drivers 
Column Decoder 

W3 

A3 
D3 

CE 

WE 

CLK 

Address 

Data 

R1 

A1 

R2 W5 R4 

A2 A4 A5 
Q1 Q2 Q4 D5 

difference between read and write timings
 creates wasted cycles (“wait states”) 

long “flow-through”
 combinational path creates high

 CLK-Q delay  
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ZBT Eliminates the Wait State 
•  The wait state occurs because: 

–  On a read, data is available after the clock edge 
–  On a write, data is set up before the clock edge 

•  ZBT (“zero bus turnaround”) memories change the rules for writes 
–  On a write, data is set up after the clock edge  

(so that it is read on the following edge) 
–  Result: no wait states, higher memory throughput 

CE 
WE 
CLK 

Address 

Data 

A1 A2 A3 A4 A5 
Q1 Q2 D3 Q4 D5 

W3 R1 R2 W5 R4 

Write to A3 
requested 

Data D3 
loaded 

Write to A5 
requested 

Data D5 
loaded 
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Pipelining Allows Faster CLK 
•  Pipeline the memory by registering its output 

–  Good: Greatly reduces CLK-Q delay, allows higher clock (more throughput) 
–  Bad: Introduces an extra cycle before data is available (more latency) 

Data
 Pins 

Read 
Logic 

Write Enable 
Chip Enable 

Output Enable 

Memory 
matrix 

… 

… 

Row D
ecoder 

Address
 Pins 

Sense Amps/Drivers 
Column Decoder 

pipelining register 

CE 
WE 
CLK 

Address 
Data 

A1 A2 A3 A4 A5 
Q1 Q2 D3 Q4 D5 

W3 R1 R2 W5 R4 

one-cycle 
latency... (ZBT write to A3) (ZBT write to A5) 

ZBT 
Write 
Logic 

As an example, see 
the CY7C147X ZBT 
Synchronous SRAM 
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EEPROM 

Removing programming  
voltage leaves charge trapped 

0 V 

5 V 0 V 

D S 

20 V 

10 V 5 V 20 V 

D S 
Avalanche injection 

[Rabaey03] 

This is a non-volatile memory (retains state when supply turned off) 

Electrically Erasable Programmable Read-Only Memory 

Intel 
EEPROM – The Floating Gate Transistor 

Floating 
gate 

Usage: Just like SRAM, but writes are much slower than reads 
( write sequence is controlled by an FSM internal to chip ) 

Common application: configuration data (serial EEPROM) 
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Interacting with Flash and (E)EPROM 

•  Reading from flash or (E)EPROM is the same as reading from SRAM 
•  Vpp: input for programming voltage (12V) 

–  EPROM: Vpp is supplied by programming machine 
–  Modern flash/EEPROM devices generate 12V using an on-chip charge pump 

•  EPROM lacks a write enable 
–  Not in-system programmable (must use a special programming machine) 

•  For flash and EEPROM, write sequence is controlled by an internal FSM 
–  Writes to device are used to send signals to the FSM 
–  Although the same signals are used, one can’t write to flash/EEPROM in the same

 manner as SRAM 

Address Data 

Chip Enable 

Output Enable 

Write  Enable FSM 

Vcc (5V) 

Programming
 voltage (12V) 

Charge
 pump 

Flash/EEPROM block diagram 

EPROM omits
 FSM, charge

 pump, and
 write enable 
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Dynamic RAM (DRAM) Cell 

WL

X

BL
VDD/2

VDD

GND

Write "1" Read "1"

sensing
VDD/2

  DRAM relies on charge stored in a capacitor to hold state 
  Found in all high density memories (one bit/transistor) 
  Must be “refreshed” or state will be lost – high overhead 

DRAM uses
 Special

 Capacitor
 Structures  

To Write: set Bit Line (BL) to 0 or VDD 
& enable Word Line (WL) (i.e., set to VDD ) 

To Read: set Bit Line (BL) to VDD /2 
& enable Word Line (i.e., set it to VDD ) 

Cell Plate Si 
Capacitor Insulator 
Storage Node Poly 

2nd Field Oxide 

Refilling Poly 

Si Substrate 

[Rabaey03] 

CS
M1

BLWL

CBL
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Asynchronous DRAM Operation 

•  Clever manipulation of RAS and CAS after reads/writes provide
 more efficient modes: early-write, read-write, hidden-refresh, etc. 
(See datasheets for details) 

Address 

RAS 

CAS 

Data 

WE 

Row 

Q (data from RAM) 

Col 

RAS-before-CAS  
for a read or write 

(Row and column addresses taken
 on falling edges of RAS and CAS) 

(Tristate) 

CAS-before-RAS  
for a refresh 

set high/low  before
 asserting CAS 
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Addressing with Memory Maps 
•  Address decoder selects memory 

–  Example: ‘138 3-to-8 decoder 
–  Produces enable signals 

•  SRAM-like interface often used
 for peripherals 

–  Known as “memory mapped”
 peripherals 
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Memory Devices: Helpful Knowledge 

•  SRAM vs. DRAM 
–  SRAM holds state as long as power supply is turned on. DRAM

 must be “refreshed” – results in more complicated control 
–  DRAM has much higher density, but requires special capacitor

 technology.  
–  FPGA usually implemented in a standard digital process

 technology and uses SRAM technology  
•  Non-Volatile Memory 

–  Fast Read, but very slow write (EPROM must be removed from
 the system for programming!) 

–  Holds state even if the power supply is turned off 
•  Memory Internals 

–  Has quite a bit of analog circuits internally  -- pay particular
 attention to noise and PCB board integration 

•  Device details 
–  Don’t worry about them, wait until 6.012 or 6.374 
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You Should Understand Why… 
•  control signals such as Write Enable should be registered 
•  a multi-cycle read/write is safer from a timing perspective

 than the single cycle read/write approach 
•  it is a bad idea to enable two tri-states driving the bus at the

 same time 
•  an SRAM does not need to be “refreshed” while a DRAM

 requires refresh 
•  an EPROM/EEPROM/FLASH cell can hold its state even if the

 power supply is turned off 
•  a synchronous memory can result in higher throughput 
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