
COE 405, Term 131

 Design & Modeling of Digital Systems

HW# 4

Due date: Thursday, Nov. 21

Q.1. Various algorithms have been developed to improve the performance of sequential

multipliers and to simplify their circuitry. Booth’s recoding algorithm is widely used

because it has a simple hardware realization, requires less silicon area and can speed

sequential multiplication significantly. Multipliers that use Booth’s algorithm recode the

bits of the multiplier to reduce the number of additions required to complete the cycle of

multiplication. Only the multiplier is recoded; the multiplicand is left unchanged. Booth

algorithm is applicable to positive numbers and to negative numbers in 2’s complement

representation. The key to Booth’s algorithm is that it skips over strings of 1’s in the

multiplier and replaces a series of additions by one addition and one subtraction. For

example, the word 1111_0000 is equivalent to 2
8
-1-(2

4
-1)=2

8
 – 2

4
 = 256-16=240. The

table below summarizes the recoding rules.

The algorithm reads from the LSB to the MSB and the value of two successive bits (mi,

mi-1) determines the Booth recoded multiplier bit, BRCi. As the algorithm reads two

successive bits, the present and the immediate past, it forms and uses BRCi to determine

whether to add or subtract before skipping to the next bit. The first step of the algorithm is

seeded with a value of 0 to the right of the LSB of the word. If the signed digit 1 is

encountered, a subtraction operation is performed (i.e. an appropriately shifted copy of the

2’s complement of the multiplicand is added to the product). The process encodes the first

encountered 1 as a 1, skips over any successive 1’s until a 0 is encountered. That 0 is

encoded as 1 to signify the end of a string of 1’s, and then the process continues. As an

example of Booth recoding, the encoding of -65=1011_1111 is shown below.

A block diagram and an ASMD chart for the booth multiplier are given below. The

machine is efficient as it does not waste time doing needless operations, such as

multiplying by 0 or multiplying after the last 1 in the multiplier has been found. When

word1 or word2 are 0, Empty signal is asserted. When the value of the multiplier register

is 1, the machine’s action depends on whether this last bit of 1 is possibly due to word2

having been the 2’s complement code corresponding to a negative number (i.e., the MSB

of word2 was 1). Moreover, when m_is_1 is asserted, there are only two possible values

of BRC: 2 and 3. In the former case, the usual subtraction must be performed. Sub is

asserted and the state moves from S_running to S_shift1, where BRC is now 1. If word2

was negative, no further action is required; otherwise, a final addition must be executed.

Shift is asserted in S_Shift1 to align the multiplicand for the final addition, then the state

moves to S_Shift2, where Add is asserted. The latter case must be handled differently,

because the condition that BRC is 3 in S_running with m_is_1 asserted could be due to an

intermediate string of 1’s or to a terminating string of 1’s in word2. A terminating string

of 1’s corresponds to a negative 2’s complement multiplier and dictates that Add not be

asserted in S_shift2. There is no way to distinguish between these two cases without

setting a flag in the datapath to indicate that word2 is negative and passing the result as a

status signal to the controller. The machine uses a flag register in the datapath to form an

additional status signal, w2_neg, to indicate that the data pattern of word2 has a negative

value.

(i) Show the design of the data-path and control unit of a 4-bit sequential Booth

multiplier.

(ii) Model the circuit in Verilog and verify its correct functionality by simulation for the

following values:

 Multiplicand=-8, multiplier=7

 Multiplicand=-8, multiplier=-8

 Multiplicand=-5, multiplier=1

 Multiplicand=-5, multiplier=0

(iii) Implement the circuit using Xilinx FPGA board and verify its correct functionality for

the following values: (1% Bonus)

 Multiplicand=-8, multiplier=7

 Multiplicand=-8, multiplier=-8

 Multiplicand=-5, multiplier=1

 Multiplicand=-5, multiplier=0

