COE 405, Term 062
Design & Modeling of Digital Systems
HW# 3 Solution
Due date: Monday, April 16, 2007

Q.1. You are required to model an ALU that has the following entity description:

Entity ALU is
Generic (N: Natural :=4);
Port (A, B: IN Bit_Vector(N-1 Downto 0);
Cin: IN Bit;
Sel: IN Bit_Vector(2 Downto 0);
C: OUT Bit_Vector(N-1 Downto 0);
Cout, SignF, OverflowF, ZeroF: OUT BIT
);
End;
The ALU performs one of eight different functions according to selection line
inputs as shown in the table given below:

Sel Function
000 C=A+B

001 C=A+B+Cin
010 C=A-B

011 C=A-B-Cin
100 C=B+1

101 C=B-1

110 C=B

111 C=2*B

The four flags Cout, SignF, OverflowF and ZeroF are computed according to the
result. Note that the Cout flag is considered a borrow when a subtraction
operation is performed.

(i) Model the following two functions, “+” and *“-“, to support addition and subtraction
on Bit Vector. Model the functions by converting Bit Vector type to Integer,
perform the required operation in integer and then convert the result back to
Bit_Vector type. Assume that the returned result has length one extra bit more than
the inputs to return the carry out.

Function "+" (I, r: Bit_Vector) RETURN Bit_vector IS
Function "-" (I, r: Bit_Vector) RETURN Bit_vector IS

Subtype Sinteger is Integer Range -2**(N+1)to 2**(N+1)-1;
Function Bin2Int(Bin: Bit_Vector) return Sinteger is
variable SUM: Sinteger:=0;

begin
-- convert to integer as unsigned
For I IN O To (Bin'Length - 1) Loop
if Bin(1)="1" then
SUM := SUM + (2**I);
end if;
End Loop;
return SUM,;
end Bin2Int;

Procedure Int2Bin (Int: IN Sinteger; Bin: OUT BIT_VECTOR) IS
Variable Tmp: Sinteger;
Constant size: Natural := Bin'length;
Begin
Tmp = Int;
if (Tmp < 0) Then
Tmp :=2**size+Tmp;
End If;
For 1 IN O To (Bin'Length - 1) Loop
If (Tmp MOD 2 =1) Then

Bin(l) :="1
Else Bin(l) :='0";
End If;
Tmp:=Tmp/2;
End Loop;
End Int2Bin;
Function "+" (I,r: Bit_Vector) RETURN Bit_vector IS

Variable IRes: Sinteger;
Variable Result: Bit_Vector(I'length downto 0);
Begin
IRes := Bin2Int(l) + Bin2Int(r);
Int2Bin(IRes, Result);
Return Result;
End "+";
Function """ (1,r: Bit_Vector) RETURN Bit_vector IS
Variable IRes: Sinteger;
Variable Result: Bit_Vector(I'length downto 0);
Begin
IRes := Bin2Int(l) - Bin2Int(r);
Int2Bin(IRes, Result);
Return Result;
End "-";

(if) Write a behavioral model for modeling the ALU using the developed functions in (i).

Architecture BM of ALU is
Begin

Process(A, B, Cin, Sel)
Variable Tmp: Bit_Vector (A'length Downto 0);
Variable Tmp2: Bit_Vector (A'length-1 Downto 0);
Variable Tmp3 : Bit_Vector (A'length Downto 0);
Variable Zero: Bit_Vector (A'length-1 Downto 0) := (N-1 Downto 0=>'0");

Begin
Case Sel is
When "000" => Tmp := A+ B;
Cout <= Tmp(N); C <= Tmp(N-1 Downto 0);
if (Tmp(N-1 Downto 0) = Zero) Then
ZeroF <="1";
else
ZeroF <="0",
end if;
if ((A(N-1) = B(N-1)) AND (Tmp(N-1) /= A(N-1))) Then
OverflowF <="1",
else
OverflowF <="0",
End if;
Signf <= Tmp(N-1);
When "001" => Tmp = A+B;
Tmp2 := ((N-1 Downto 1=>'0")&Cin);
Tmp3 := Tmp(N-1 Downto 0) + Tmp2;
C <= Tmp3(N-1 Downto 0);
If (Tmp(N)="1" OR Tmp3(N)="1") Then
Cout <="1
else
Cout <=0
end if;
if (Tmp3(N-1 Downto 0) = Zero) Then
ZeroF <="'1',
else
ZeroF <="0";
end if;
if ((A(N-1) = B(N-1)) AND (Tmp3(N-1) /= A(N-1))) Then
OverflowF <="1";
else
OverflowF <="0",
End if;
Signf <= Tmp3(N-1);
When "010" => Tmp:=A-B;
Cout <= Tmp(N); C <= Tmp(N-1 Downto 0);
if (Tmp(N-1 Downto 0) = Zero) Then
ZeroF <="1"
else
ZeroF <="0",
end if;
if ((A(N-1) /= B(N-1)) AND (Tmp(N-1) /= A(N-1))) Then
OverflowF <="1";
else

When "011" =>

When "100" =>

When "101" =>

When "110" =>

OverflowF <='0,
End if;
Signf <= Tmp(N-1);
Tmp:=A-B;
Tmp2 := ((N-1 Downto 1=>'0")&Cin);
Tmp3 := Tmp(N-1 Downto 0) - Tmp2;
C <= Tmp3(N-1 Downto 0);
If (Tmp(N)="1' OR Tmp3(N)="1") Then
Cout <="1"
else
Cout <="0"
end if;
if (Tmp3(N-1 Downto 0) = Zero) Then
ZeroF <="'1";
else
ZeroF <="0"
end if;
if ((A(N-1) /= B(N-1)) AND (Tmp3(N-1) /= A(N-1)))
OverflowF <="1";
else
OverflowF <="0";
End if;
Signf <= Tmp3(N-1);

Tmp2 := ((N-1 Downto 1=>'0"&'1Y;

Tmp3 :=B + Tmp2;

C <= Tmp3(N-1 Downto 0);

Cout <= Tmp3(N);

if (Tmp3(N-1 Downto 0) = Zero) Then
ZeroF <="1",

else
ZeroF <="0"

end if;

if ((B(N-1) = Tmp2(N-1)) AND (Tmp3(N-1) /= B(N-1)))
OverflowF <="1"

else
OverflowF <="0

End if;

Signf <= Tmp3(N-1);

Tmp2 := ((N-1 Downto 1=>'0")&'1");

Tmp3 :=B - Tmp2;

C <=Tmp3(N-1 Downto 0);

Cout <= Tmp3(N);

if (Tmp3(N-1 Downto 0) = Zero) Then
ZeroF <="1";

else
ZeroF <="0"

end if;

if ((B(N-1) /= Tmp2(N-1)) AND (Tmp3(N-1) /= B(N-1)))
OverflowF <="1",

else
OverflowF <="0";

End if;

Signf <= Tmp3(N-1);

Cout<='0"; C <=B;
if (B(N-1 Downto 0) = Zero) Then

Then

Then

Then

ZeroF <="1";
else

ZeroF <="0",
end if;

OverflowF <="0";
Signf <= B(N-1);
When "111"=> Tmp:=B + B;
Cout <= Tmp(N); C <= Tmp(N-1 Downto 0);
if (Tmp(N-1 Downto 0) = Zero) Then
ZeroF <="'1";
else
ZeroF <="0",
end if;
if ((A(N-1) = B(N-1)) AND (Tmp(N-1) /= A(N-1))) Then
OverflowF <="1";
else
OverflowF <="0";
End if;
Signf <= Tmp(N-1);

End Case;

End Process;

End;

(iii) Write a test bench for testing the n-bit ALU assuming that the input arguments are
read from an input file and that the output will be stored in an output file. Use
TEXTIO package for this purpose. Apply the following values for testing the correct
operation of a 4-bit ALU:

ALU Select | Input A Input B Cin
000 5 2
000 -8 7
000 7 7
000 -7 -2
000 -1 1
000 -1 -1
001 -1 1 1
001 -1 -1 0
001 -1 -1 1
001 -1 0 1
010 3 4
010 -8 7
010 -7 -1
010 -7 2
011 -7 1 1
011 3 2 1
011 -8 1 1
100 -1

100 1
100 7
101 0
101 -1
101 -8
101 7
110 -1
110 7
111 -1
111 3
111 7

The output should be stored in the output file using the following format:

ALU Operation Input A InputB Result Cout Signf OverflowF ZeroF

C=A+B 5 2 7 0 0 0 0

USE STD.TEXTIO.ALL,;

Entity ALU_test is
End;

Architecture Test of ALU _test is
Component ALU
Generic (N: Natural :=4);
Port (A, B: IN Bit_Vector(N-1 Downto 0);
Cin: IN Bit;
Sel: IN Bit_Vector(2 Downto 0);
C: OUT Bit_Vector(N-1 Downto 0);
Cout, SignF, OverflowF, ZeroF: OUT BIT
)i

End Component;
For ALL: ALU Use Entity work.alu(BM);

Constant N: Positive :=4;
Constant K: Positive :=30;
Constant Period: Time := 100 ns;

TYPE Integers IS ARRAY (NATURAL RANGE <>) of INTEGER;
TYPE Vectors IS ARRAY (NATURAL RANGE <>) of Bit_Vector(2 downto 0);
TYPE Bits IS ARRAY (NATURAL RANGE <>) of Bit;

Procedure Int2Bin (Int: IN Integer; Bin : OUT BIT_VECTOR) IS
Variable Tmp: Integer;
Constant size: Natural := Bin'length;

Begin
Tmp = Int;
if (Tmp <0) Then
Tmp :=2**size+Tmp;
End If;
For I IN O To (Bin'Length - 1) Loop
If (Tmp MOD 2 =1) Then
Bin(l) :='1"
Else Bin(l) :='0;
End If;
Tmp:=Tmp/2;
End Loop;
End Int2Bin;

Procedure Apply_Data (
Signal Target: OUT Bit_Vector;
Constant Values: IN Integers;
Constant Period: IN Time) IS
Variable Buf: Bit_Vector(Target'range);
Begin
For I IN O To Values'length-1 Loop
Int2Bin (Values(l), Buf);
Target <= Transport Buf After | * Period,
End Loop;
End Apply_Data;

Procedure Apply_Data (
Signal Target: OUT Bit_Vector;
Constant Values: IN Vectors;
Constant Period: IN Time) IS
Begin
For I IN 0 To Values'length-1 Loop
Target <= Transport Values(l) After | * Period;
End Loop;
End Apply_Data;
Procedure Apply_Data (
Signal Target: OUT Bit;
Constant Values: IN Bits;
Constant Period: IN Time) IS
Begin
For I IN 0 To Values'length-1 Loop
Target <= Transport Values(l) After | * Period;
End Loop;
End Apply_Data;

function Bin2Int(Bin: Bit_Vector) return integer is

variable SUM: INTEGER:=0;
begin
-- convert to integer as unsigned
For I IN 0 To (Bin'Length - 1) Loop
if Bin(1)="1" then
SUM := SUM + (2**1);
end if;
End Loop;
-- if negative
if (Bin(Bin'Length -1)="1") then
-- 2's complement
SUM := 2**(Bin'Length)-SUM,;
-- set the negaive sign
SUM :=-SUM,;
end if;
return SUM;

end Bin2lInt;

Signal A, B, C: Bit_Vector(N-1 Downto 0);
Signal Cin, Cout, SignF, OverflowF, ZeroF: Bit;
Signal Sel: Bit_Vector(2 Downto 0);

Signal First, Second: Integers(0 to K-1);
Signal SelA: Vectors(0 to k-1);

Signal Carryin: Bits(0 to k-1);

Begin

Process

File Infile : Text IS IN "alu_input.txt™;
Variable My _Line : Line;

Variable val: Integer;

Variable sval: Bit_Vector(2 downto 0);
Variable cval : Bit;

File outFile: Text IS OUT "alu_output.txt";
Variable write_line: Line;

Variable Str: String(1 to 67);

Variable Str2: String(1 to 13);

Variable Str3: String(1 to 85);

Variable i,j: integer :=0;

Begin
While Not (Endfile(Infile)) Loop
Readline(Infile, My_L.ine); -- read a line from the input file
Read(My_Line, sval); -- read select value

SelA(i) <= sval;

Case sval is
When "000" | "010" =>

Read(My_L.ine, val); -- read A value from the line
First(i)<= val,
Read(My_Line, val); -- read B value from the line

Second(i)<= val,
Carryin(i) <="'0,

When "001" | "011" =>

Read(My_Line, val); -- read A value from the line
First(i)<= val,

Read(My_Line, val); -- read B value from the line
Second(i)<= val,

Read(My _Line, cval); --read Cin value from the line

Carryin(i) <= cval,

When Others =>
First(i)<=0;
Read(My_Line, val); -- read B value from the line
Second(i)<= val;
Carryin(i) <="'0,

End Case;
i=i+1;
End Loop;

-- added code to write sum's into a file ---

wait for 10 ns;

Str :="ALU Operation"&ht&"Input A"&ht&"Input
B"&ht&"Cin"&ht&"Result"&ht&"Cout" &ht&"Signf" &ht&"OverflowF"&ht&"Zero
F

Write(write_line,Str);

Writeline(outFile, write_line);

Str3 =

Write(write_line,Str3);

Writeline(outFile, write_line);

J:=0;

while (j <1) loop

sval := SelA());

Case Sval is

When "000" =>
str2 := "C=A+B "
Write(write_line,str2);
Write(write_line,ht);
Write(write_line, First(j));
Write(write_line,ht);
Write(write_line, Second(j));

Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Bin2Int(C));
Write(write_line,ht);
Write(write_line, Cout);
Write(write_line,ht);
Write(write_line, Signf);
Write(write_line,ht);
Write(write_line, OverflowF);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, ZeroF);
Writeline(outFile, write_line);
When "001" =>
str2 :="C=A+B+Cin ";
Write(write_line,str2);
Write(write_line,ht);
Write(write_line, First(j));
Write(write_line,ht);
Write(write_line, Second(j));
Write(write_line,ht);
Write(write_line, Carryin(j));
Write(write_line,ht);
Write(write_line, Bin2Int(C));
Write(write_line,ht);
Write(write_line, Cout);
Write(write_line,ht);
Write(write_line, Signf);
Write(write_line,ht);
Write(write_line, OverflowF);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, ZeroF);
Writeline(outFile, write_line);
When "010" =>
str2 :="C=A-B "
Write(write_line,str2);
Write(write_line,ht);
Write(write_line, First(j));
Write(write_line,ht);
Write(write_line, Second(j));
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Bin2Int(C));
Write(write_line,ht);
Write(write_line, Cout);
Write(write_line,ht);
Write(write_line, Signf);

Write(write_line,ht);
Write(write_line, OverflowF);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, ZeroF);
Writeline(outFile, write_line);
When "011" =>
str2 :="C=A-B-Cin ";
Write(write_line,str2);
Write(write_line,ht);
Write(write_line, First(j));
Write(write_line,ht);
Write(write_line, Second(j));
Write(write_line,ht);
Write(write_line, Carryin(j));
Write(write_line,ht);
Write(write_line, Bin2Int(C));
Write(write_line,ht);
Write(write_line, Cout);
Write(write_line,ht);
Write(write_line, Signf);
Write(write_line,ht);
Write(write_line, OverflowF);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, ZeroF);
Writeline(outFile, write_line);
When "100" =>
str2 :="C=B+1 "
Write(write_line,str2);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Second(j));
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Bin2Int(C));
Write(write_line,ht);
Write(write_line, Cout);
Write(write_line,ht);
Write(write_line, Signf);
Write(write_line,ht);
Write(write_line, OverflowF);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, ZeroF);
Writeline(outFile, write_line);
When "101" =>
str2 :="C=B-1 "

Write(write_line,str2);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Second(j));
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Bin2Int(C));
Write(write_line,ht);
Write(write_line, Cout);
Write(write_line,ht);
Write(write_line, Signf);
Write(write_line,ht);
Write(write_line, OverflowF);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, ZeroF);
Writeline(outFile, write_line);
When "110" =>
str2 :="C=B "
Write(write_line,str2);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Second(j));
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Bin2Int(C));
Write(write_line,ht);
Write(write_line, Cout);
Write(write_line,ht);
Write(write_line, Signf);
Write(write_line,ht);
Write(write_line, OverflowF);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, ZeroF);
Writeline(outFile, write_line);
When "111" =>
str2 :="C=2*B "
Write(write_line,str2);
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Second(j));
Write(write_line,ht);
Write(write_line,ht);
Write(write_line, Bin2Int(C));
Write(write_line,ht);
Write(write_line, Cout);
Write(write_line,ht);

Write(write_line, Signf);
Write(write_line,ht);

Write(write_line, OverflowF);

Write(write_line,ht);
Write(write_line,ht);
Write(write_line, ZeroF);
Writeline(outFile, write_line)

End Case;

j=i+y

wait for Period;

End loop;

wait;
End Process;

Apply_data(A, First, Period);
Apply_data(B, Second, Period);
Apply_data(Cin, Carryin, Period);
Apply_data(Sel, SelA, Period);

CUT: ALU Generic Map (N) Port Map (A, B, Cin, Sel, C, Cout, SignF,

OverflowF, ZeroF);
End;

Resulting output file from running the test bench:

ALU Operation Input A Input B Cin Result Cout

Signf

OverflowF

ZeroF

C=A+B 5

2 7 0
C=A+B -8 7 -1 0
C=A+B 7 7 -2 0
C=A+B -7 -2 7 1
C=A+B -1 1 0 1
C=A+B -1 -1 -2 1
C=A+B+Cin -1 1 1 1 1
C=A+B+Cin -1 -1 0 -2 1
C=A+B+Cin -1 -1 1 -1 1
C=A+B+Cin -1 0 1 0 1
C=A-B 3 4 -1 1
C=A-B -8 7 1 0
C=A-B -7 -1 -6 1
C=A-B -7 2 7 0
C=A-B-Cin -7 1 1 7 0
C=A-B-Cin 3 2 1 0 0
C=A-B-Cin -8 1 1 6 0
C=B+1 -1 0 1
C=B+1 1 2 0
C=B+1 7 -8 0
C=B-1 0 -1 1
C=B-1 -1 -2 0
C=B-1 -8 7 0
C=B-1 7 6 0
C=B -1 -1 0

POORPRRFRPPFPOOOOOORFrRORPRORPRPFPOPFRPOORL,EFLO

O O0OPFrRPOOFrRPROOFRPROFRPFRPOPFPOOOOODOORFR,EF OO

cNeoNoloNeoloNoll el NelloloNelol ellelNeNoeol ielNelNoNe]

C=B 7 7 0 0 0 0
C=2*B -1 -2 1 1 0 0
C=2*B 3 6 0 0 0 0
C=2*B 7 -2 0 1 1 0

(iv) Define a package called HW3 where you store all used types, subtypes, functions
and procedures inside the package and use the package when needed.

Package HW3 is
Constant N: Positive :=4;
Subtype Sinteger is Integer Range -2**(N+1)to 2**(N+1)-1;
TYPE Integers IS ARRAY (NATURAL RANGE <>) of INTEGER,;
TYPE Vectors IS ARRAY (NATURAL RANGE <>) of Bit_Vector(2 downto 0);
TYPE Bits IS ARRAY (NATURAL RANGE <>) of Bit;
Function Bin2Int(Bin: Bit_Vector) return Sinteger;
Procedure Int2Bin (Int: IN Sinteger; Bin : OUT BIT_VECTOR);
Function "+" (I,r: Bit_Vector) RETURN Bit_vector;
Function "-" (l,r: Bit_Vector) RETURN Bit_vector;

Procedure Apply_Data (
Signal Target: OUT Bit_Vector;
Constant Values: IN Integers;
Constant Period: IN Time);
Procedure Apply_Data (
Signal Target: OUT Bit_Vector;
Constant Values: IN Vectors;
Constant Period: IN Time);

Procedure Apply_Data (
Signal Target: OUT Bit;
Constant Values: IN Bits;
Constant Period: IN Time);

Function Bin2Ints(Bin: Bit_Vector) return integer;
End;
Package Body HW3 is

Function Bin2Int(Bin: Bit_Vector) return Sinteger is
variable SUM: Sinteger:=0;

begin
-- convert to integer as unsigned
For 1 IN O To (Bin'Length - 1) Loop
if Bin(1)="1" then
SUM := SUM + (2**I);
end if;
End Loop;
return SUM,;
end Bin2lInt;

Procedure Int2Bin (Int: IN Sinteger; Bin: OUT BIT_VECTOR) IS
Variable Tmp: Sinteger;
Constant size: Natural := Bin'length;

Begin

Tmp := Int;

if (Tmp <0) Then
Tmp :=2**size+Tmp;

End If;

For I IN 0 To (Bin'Length - 1) Loop
If (Tmp MOD 2 =1) Then

Bin(l) :="1"
Else Bin(l) :='0";
End If;
Tmp:=Tmp/2;
End Loop;
End Int2Bin;
Function "+" (1,r: Bit_Vector) RETURN Bit_vector IS

Variable IRes: Sinteger;

Variable Result: Bit_Vector(I'length downto 0);
Begin

IRes := Bin2Int(l) + Bin2Int(r);

Int2Bin(IRes, Result);
Return Result;
End "+";

Function """ (l,r: Bit_Vector) RETURN Bit_vector IS
Variable IRes: Sinteger;
Variable Result: Bit_Vector(I'length downto 0);

Begin
IRes := Bin2Int(l) - Bin2Int(r);
Int2Bin(IRes, Result);
Return Result;

End "-";

Procedure Apply_Data (
Signal Target: OUT Bit_Vector;
Constant Values: IN Integers;
Constant Period: IN Time) IS
Variable Buf: Bit_Vector(Target'range);
Begin
For I IN 0 To Values'length-1 Loop
Int2Bin (Values(l), Buf);
Target <= Transport Buf After | * Period;
End Loop;
End Apply_Data;

Procedure Apply_Data (
Signal Target: OUT Bit_Vector;
Constant Values: IN Vectors;
Constant Period: IN Time) IS
Begin
For I IN O To Values'length-1 Loop
Target <= Transport Values(l) After | * Period,;
End Loop;
End Apply_Data;
Procedure Apply_Data (
Signal Target: OUT Bit;
Constant Values: IN Bits;
Constant Period: IN Time) IS
Begin
For I IN 0 To Values'length-1 Loop
Target <= Transport Values(l) After | * Period,

End Loop;
End Apply_Data;

Function Bin2Ints(Bin: Bit_Vector) return integer is
variable SUM: INTEGER:=0;
begin
-- convert to integer as unsigned
For I IN 0 To (Bin'Length - 1) Loop
if Bin(1)="1" then
SUM := SUM + (2**1);
end if;
End Loop;
-- if negative
if (Bin(Bin'Length -1)="1") then
-- 2's complement
SUM := 2**(Bin'Length)-SUM,;
-- set the negaive sign
SUM :=-SUM,;
end if;
return SUM,;

end Bin2Ints;

End;

(v) Synthesize the modeled ALU in (ii) using Xilinx Project Navigator and report on the
total equivalent gate count for design after mapping and the longest delay in the
design based on Post-Map static timing report.

Total equivalent gate=609
Longest delay in the design=11.787 ns .

(vi) Remodel the functions in (i), “+” and “-“, based on performing the operation using a
ripple carry add like functionality. Change the ALU model based on the use of these
two newly modeled functions and reapply the same test bench modeled in (iii) to
verify the correct functionality of the ALU.

Architecture BM2 of ALU is

Function "+" (l,r: Bit_Vector) RETURN Bit_vector IS
Variable Sum: Bit_Vector(l'length downto 0);
Variable P, G: Bit_Vector(I'length-1 downto 0);

Variable C: Bit_Vector(I'length downto 0);

Begin

C(0) :="0,
ForiinOto N-1 Loop

P(i) := I(i) XOR r(i);

G(i) == I(i) AND r(i);

Sum(i) := P(i) XOR C(i);

C(i+1) :=G(i) OR (P(i) AND C(i));
End Loop;

Sum(l'length) := C(I'length);
Return Sum;
End "+";

Function "-" (I,r: Bit_Vector) RETURN Bit_vector IS

Variable Sum: Bit_Vector(l'length downto 0);
Variable P, G: Bit_Vector(I'length-1 downto 0);
Variable C: Bit_Vector(I'length downto 0);
Begin

C(0):="1,
ForiinOto N-1 Loop

P(i) := I(i) XOR Not r(i);

G(i) := I(i) AND Not r(i);

Sum(i) := P(i) XOR C(i);

C(i+1) = G(i) OR (P(i) AND C(i));
End Loop;

Sum(l'length) := C(I'length);
Return Sum;
End "-";

Begin

Process(A, B, Cin, Sel)
Variable Tmp: Bit_Vector (A'length Downto 0);
Variable Tmp2: Bit_Vector (A'length-1 Downto 0);
Variable Tmp3 : Bit_Vector (A'length Downto 0);
Variable Zero: Bit_Vector (A'length-1 Downto 0) := (N-1 Downto 0=>'0");

Begin
Case Sel is
When "000" => Tmp:=A +B;

Cout <= Tmp(N); C <= Tmp(N-1 Downto 0);

if (Tmp(N-1 Downto 0) = Zero) Then
ZeroF <="1",

else
ZeroF <="0",

end if;

if ((A(N-1) = B(N-1)) AND (Tmp(N-1) /= A(N-1))) Then
OverflowF <="1"

else
OverflowF <="0

End if;

Signf <= Tmp(N-1);

When "001" => Tmp = A+B;

Tmp2 := ((N-1 Downto 1=>'0")&Cin);

Tmp3 := Tmp(N-1 Downto 0) + Tmp2;

C <=Tmp3(N-1 Downto 0);

If (Tmp(N)="1' OR Tmp3(N)="1") Then
Cout <="1"

else
Cout <="0"

end if;

if (Tmp3(N-1 Downto 0) = Zero) Then
ZeroF <="1",

else
ZeroF <=0

end if;

if ((A(N-1) = B(N-1)) AND (Tmp3(N-1) /= A(N-1))) Then
OverflowF <="1";

else
OverflowF <=0

End if;

When "010" =>

When "011" =>

When "100" =>

When "101" =>

Signf <= Tmp3(N-1);

Tmp:=A-B;

Cout <= Not Tmp(N); C <= Tmp(N-1 Downto 0);

if (Tmp(N-1 Downto Q) = Zero) Then
ZeroF <="1",

else
ZeroF <="'0";

end if;

if ((A(N-1) /= B(N-1)) AND (Tmp(N-1) /= A(N-1)))
OverflowF <="1"

else
OverflowF <='0";

End if;

Signf <= Tmp(N-1);

Tmp:=A-B;

Tmp2 := ((N-1 Downto 1=>'0")&Cin);

Tmp3 := Tmp(N-1 Downto 0) - Tmp2;

C <= Tmp3(N-1 Downto 0);

If (Tmp(N)="1" OR Tmp3(N)="1") Then
Cout <="0"

else
Cout <="0"

end if;

if (Tmp3(N-1 Downto 0) = Zero) Then
ZeroF <="1",

else
ZeroF <="0"

end if;

if ((A(N-1) /= B(N-1)) AND (Tmp3(N-1) /= A(N-1)))
OverflowF <="1"

else
OverflowF <="0

End if;

Signf <= Tmp3(N-1);

Tmp2 := ((N-1 Downto 1=>'0")&'1");

Tmp3 :=B + Tmp2;

C <=Tmp3(N-1 Downto 0);

Cout <= Tmp3(N);

if (Tmp3(N-1 Downto 0) = Zero) Then
ZeroF <="1";

else
ZeroF <="0";

end if;

if ((B(N-1) = Tmp2(N-1)) AND (Tmp3(N-1) /= B(N-1)))

OverflowF <="1";
else

OverflowF <="0";
End if;
Signf <= Tmp3(N-1);

Tmp2 := ((N-1 Downto 1=>'0"&'1Y;

Tmp3 :=B - Tmp2;

C <= Tmp3(N-1 Downto 0);

Cout <= Not Tmp3(N);

if (Tmp3(N-1 Downto 0) = Zero) Then
ZeroF <="1"

else

Then

Then

Then

ZeroF <="'0";

end if;

if ((B(N-1) /= Tmp2(N-1)) AND (Tmp3(N-1) /=B(N-1))) Then
OverflowF <="1"

else
OverflowF <='0";

End if;

Signf <= Tmp3(N-1);

When "110" =>

Cout<='0"; C<=B;

if (B(N-1 Downto 0) = Zero) Then
ZeroF <="'1";

else
ZeroF <="'0";

end if;

OverflowF <="0";
Signf <= B(N-1);
When "111" => Tmp :=B + B;
Cout <= Tmp(N); C <= Tmp(N-1 Downto 0);
if (Tmp(N-1 Downto Q) = Zero) Then
ZeroF <="'1',
else
ZeroF <="0";
end if;
if ((A(N-1) = B(N-1)) AND (Tmp(N-1) /= A(N-1))) Then
OverflowF <="1"
else
OverflowF <="0",
End if;
Signf <= Tmp(N-1);

End Case;
End Process;
End;

Running the test bench on thos model of the ALU produced the results shown below which are
identical to the first model:

ALU Operation Input A Input B Cin Result Cout Signf OverflowF ZeroF
C=A+B 5 2 7 0 0 0 0
C=A+B -8 7 -1 0 1 0 0
C=A+B 7 7 -2 0 1 1 0
C=A+B -7 -2 7 1 0 1 0
C=A+B -1 1 0 1 0 0 1
C=A+B -1 -1 -2 1 1 0 0
C=A+B+Cin -1 1 1 1 1 0 0 0
C=A+B+Cin -1 -1 0 -2 1 1 0 0
C=A+B+Cin -1 -1 1 -1 1 1 0 0
C=A+B+Cin -1 0 1 0 1 0 0 1
C=A-B 3 4 -1 1 1 0 0
C=A-B -8 7 1 0 0 1 0
C=A-B -7 -1 -6 1 1 0 0
C=A-B -7 2 7 0 0 1 0
C=A-B-Cin -7 1 1 7 0 0 1 0

C=A-B-Cin 3 2 1 0 0 0 0 1
C=A-B-Cin -8 1 1 6 0 0 1 0
C=B+1 -1 0 1 0 0 1
C=B+1 1 2 0 0 0 0
C=B+1 7 -8 0 1 1 0
C=B-1 0 -1 1 1 0 0
C=B-1 -1 -2 0 1 0 0
C=B-1 -8 7 0 0 1 0
C=B-1 7 6 0 0 0 0
C=B -1 -1 0 1 0 0
C=B 7 7 0 0 0 0
C=2*B -1 -2 1 1 0 0
C=2*B 3 6 0 0 0 0
C=2*B 7 -2 0 1 1 0

(vii) Synthesize the modeled ALU in (vi) using Xilinx Project Navigator and report on the
total equivalent gate count for design after mapping and the longest delay in the
design based on Post-Map static timing report. Compare the gate count and
maximum delay obtained with that obtained in (v). What are your observations and
conclusions?

Total equivalent gate= 504.
Longest delay in the design=10.768 ns.

We noticed that this implementation has resulted in less area and less delay. This is
because the conversion function from binary to integer in the first ALU has been
implemented in hardware which is a costly solution.

(viii)Remodel the functions in (i), “+” and “-*, based on performing the operation using a
cascaded 4-bit carry-look-ahead like functionality. Change the ALU model based on
the use of these two newly modeled functions and reapply the same test bench
modeled in (iii) to verify the correct functionality of the ALU.

The two remodeled functions are shown below and the ALU architecture is exactly the same as the
one given in (vi).

Function "+" (I,r: Bit_Vector) RETURN Bit_vector IS
Variable Sum: Bit_Vector(l'length downto 0);
Variable P, G: Bit_Vector(I'length-1 downto 0);
Variable C: Bit_Vector(I'length downto 0);
Begin
C(0):="0,
ForiinOto N-1 Loop
P(i) := I(i) XOR r(i);
G(i) := I(i) AND r(i);
End Loop;

Foriin 0 to (N/4)-1 Loop
C(i*4+1) := G(i*4+0) OR (P(i*4+0) AND C(i*4+0));
C(i*4+2) := G(i*4+1) OR (P(i*4+1) AND G(i*4+0)) OR (P(i*4+1) AND P(i*4+0)
AND C(i*4+0));
C(i*4+3) := G(i*4+2) OR (P(i*4+2) AND G(i*4+1)) OR (P(i*4+2) AND P(i*4+1)
AND G(i*4+0)) OR (P(i*4+2) AND P(i*4+1) AND P(i*4+0) AND C(i*4+0));

C(i*4+4) := G(i*4+3) OR (P(i*4+3) AND G(i*4+2)) OR (P(i*4+3) AND P(i*4+2)
AND G(i*4+1)) OR (P(i*4+3) AND P(i*4+2) AND P(i*4+1) AND G(i*4+0)) OR (P(i*4+3) AND
P(i*4+2) AND P(i*4+1) AND P(i*4+0) AND C(i*4+0));
End Loop;

ForiinOto N-1 Loop
Sum(i) := P(i) XOR C(i);

End Loop;
Sum(l'length) := C(I'length);
Return Sum;
End "+";
Function "-" (I,r: Bit_Vector) RETURN Bit_vector IS

Variable Sum: Bit_Vector(l'length downto 0);
Variable P, G: Bit_Vector(I'length-1 downto 0);
Variable C: Bit_Vector(I'length downto 0);
Begin
C(0) :="14
ForiinOto N-1 Loop
P(i) := I(i) XOR NOT r(i);
G(i) := I(i) AND NOT r(i);
End Loop;

Foriin 0 to (N/4)-1 Loop
C(i*4+1) := G(i*4+0) OR (P(i*4+0) AND C(i*4+0));
C(i*4+2) := G(i*4+1) OR (P(i*4+1) AND G(i*4+0)) OR (P(i*4+1) AND P(i*4+0)
AND C(i*4+0));
C(i*4+3) := G(i*4+2) OR (P(i*4+2) AND G(i*4+1)) OR (P(i*4+2) AND P(i*4+1)
AND G(i*4+0)) OR (P(i*4+2) AND P(i*4+1) AND P(i*4+0) AND C(i*4+0));
C(i*4+4) := G(i*4+3) OR (P(i*4+3) AND G(i*4+2)) OR (P(i*4+3) AND P(i*4+2)
AND G(i*4+1)) OR (P(i*4+3) AND P(i*4+2) AND P(i*4+1) AND G(i*4+0)) OR (P(i*4+3) AND
P(i*4+2) AND P(i*4+1) AND P(i*4+0) AND C(i*4+0));
End Loop;

ForiinOto N-1 Loop
Sum(i) := P(i) XOR C(i);
End Loop;

Sum(I'length) := C(I'length);
Return Sum;
End "-";

(ix) Synthesize the modeled ALU in (viii) using Xilinx Project Navigator and report on
the total equivalent gate count for design after mapping and the longest delay in the
design based on Post-Map static timing report. Compare the gate count and
maximum delay obtained with that obtained in (vii). What are your observations and
conclusions?

Total equivalent gate= 528.

Longest delay in the design=12.970 ns.

The obtained area is slightly more than the ripple carry adder and less than the first
ALU implementation. However, the delay obtained is the largest while it should be
less than the RCA ALU. This is due to the mapping process in FPGAs.

