COE 405, Term 122

Design & Modeling of Digital Systems

HW# 2

Due date: Monday, March 4

Q.1. It is required to design a sequential circuit that has a single input X and a single output Y. The circuit receives an unsigned number serially through the input X from the least significant bit (LSB) to the most significant bit (MSB), and computes the equation 3*X+1 and generates the output serially from the least significant bit to the most significant bit. The circuit has an additional reset input R which resets the circuit into an initial state. The following are examples of input and output data:

- (i) Draw the state diagram of the circuit assuming a Mealy model.
- (ii) Implement the circuit using D-FFs.
- (iii) Verify the correctness of your circuit by simulation.
- **Q.2.** It is required to design a sequential circuit that compares two n-bit numbers $A=A_{n-1}A_2A_1A_0$ and $B=B_{n-1}B_2B_1B_0$, applied to the sequential circuit serially from the least significant bits to the most significant bits. The circuit produces two outputs GT and LT. If A>B, then the output signal GT is set to 1 and LT is set to 0. If A<B, then the output signal GT is set to 0. Otherwise, both signals will be set to 0, which indicates that the two numbers are equal (i.e. A=B). Assume the existence of a reset input to reset the machine to a reset state. The following is an example of the input and output streams:

		LSB	MSB	Ai ►	Comparator	⊳ G
Input	Α	0100	1010		Sequential	
	В	0001	1010	ВІ — — — •	Circuit	
Output	GT	0011	0000		▲ ▲	
	LT	0000	1111	CLK Reset		

- (i) Draw the state diagram of the circuit assuming a **Moore** model.
- (ii) Implement the circuit using D-FFs.
- (iii) Verify the correctness of your circuit by simulation.
- Q.3. It is required to design a sequential circuit that implements a NRZI line encoder.
 - (i) Draw the state diagram of the circuit assuming a **Mealy** model.
 - (ii) Implement the circuit using D-FFs.
 - (iii) Verify the correctness of your circuit by simulation.
- **Q.4.** Consider the given FSM that has 5 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next	t State, Z	
	X=0	X=1	
SO	S2, 1	S4, 0	
S 1	S2, 0	S4, 1	
S2	S1, 0	S0, 1	
S 3	S3, 0	S4, 1	
S4	S3, 1	S0, 0	

- (i) Determine the equivalent states.
- (ii) Reduce the state table into the minimum number of states and show the reduced state table.