

COE 405

Design & Modeling of Digital Systems

Course Project#1 – Term 131

Traffic Light Controller
i

Due on: Sunday Dec. 8, 2013

In this project, you will implement a traffic light controller that operates main street, side

street and walk lamps. The traffic light controller is for an intersection between a Main Street

and a Side Street. Both streets have a red, yellow, and green signal light. Pedestrians have the

option of pressing a walk button to turn all the traffic lights red and cause a single walk light

to illuminate. Lastly, there is a sensor on the Side Street which tells the controller if there are

cars still on the Side Street. This is summarized in Figure 1.

You may assume that the 4 walk buttons placed at each street corner are hooked into the

traffic light controller using a wired-OR. For this reason, you may assume that the controller

only needs a single input called Walk-Request.

The side street sensor is placed near the intersection to tell the controller when there are cars

passing over the sensor. You may assume the sensor remains constantly high if several cars

pass over the sensor, rather than quick pulses, provided the cars are close enough together.

You do not need to implement this specific functionality. This input is named Sensor.

The traffic lights are timed on three parameters (in seconds), the base interval (t
BASE

), the

extended interval (t
EXT

), and the yellow light interval (t
YEL

). The default values listed in Table

1 are to be loaded into registers in the FPGA on reset, and may be reprogrammed on demand

using switches and buttons on your kit with the Time_Parameter_Selector, Time_Value, and

Reprogram signals. Time_Parameter_Selector uses the Parameter Number code to select the

interval during programming. Time_Value is a 4-bit value representing the value to be

programmed; therefore, it has a duration of seconds between 0 and 15. The Reprogram button

tells the system to set the currently selected interval to Time_Value.

The operating sequence of this intersection begins with the Main Street having a green light

for 2 lengths of t
BASE

seconds. Next, the Main lights turn to yellow for t
YEL

, and switches to

the Side Street green light. The Side street is green for t
BASE

, and its yellow is held for t
YEL

.

Whenever a stoplight is green or yellow, the other street’s stoplight is red. Under normal

circumstances, this cycle repeats continuously.

There are two ways the controller can deviate from the typical loop. First, a walk button

allows pedestrians to submit a walk request. The internal Walk Register should be set on a

button press and the controller should service the request after the Main street yellow light by

turning all lights to red, and the walk light to on. After a walk of t
EXT

seconds, the traffic

lights should return to its usual routine by turning the Side Street green. The walk button

should be ignored during the walk service. The second deviation is the traffic sensor. If the

traffic sensor is high at the end of the first t
BASE

length of the Main street green, the light

should remain green only for an additional t
EXT

seconds, rather than the full t
BASE

.

Additionally, if the traffic sensor is high during the end of the Side Street green, it should

remain green for an additional t
EXT

seconds.

When the machine is reset, display on the LCD screen “Traffic Light Controller”. When the

Walk signal is asserted display “You can walk now”.

Block Descriptions/Implementation

The block diagram for the Traffic Light Controller implementation is shown in Figure 2.

Debouncer/ Synchronizer

Your clocked state machine is controlled by several asynchronous inputs that might be

changed by the user at any time, potentially creating a problem with metastability in the state

registers if one of the inputs changes too near a rising clock edge. In general asynchronous

inputs need to be synchronized to the internal clock before they can be used by the internal

logic. You should feed all asynchronous inputs through an instance of the synchronize

module and use the output signal in the design of your system.

A second problem arises from the mechanical “bounce” inherent in switches and buttons: as a

metal contact opens and closes it may bounce a couple of times, creating a sequence of on/off

transitions in rapid succession. So you need to use debouncing circuitry to filter out these

unwanted transitions. debounce.v is a Verilog implementation of a digital retriggerable one-

shot that requires that an input transition be stable for 0.01sec before reporting a transition on

its output. debounce.v wil be given to you. This module happens to produce a synchronous

output, so a separate synchronizer is not required. You should use an instance of the

debounce module to debounce any switch inputs you use in your design.

Walk Register

The Walk Register allows pedestrians to set a walk request at any time except for the walk

service duration. There is also a signal controlled by the finite state machine that will be able

to reset the Register during the actual walk service.

Time Parameters

The time parameters module stores the three different time parameter values, namely t
BASE

,

t
EXT

, and t
YEL

on the FPGA. The module acts like a (small) memory from the FSM and Timer

blocks, where the FSM addresses the three parameters and the timer reads the data. From the

user’s perspective, the three time parameter values can be modified.

On a reset, the three parameters should be respectively set to 6, 3, and 2 seconds. However, at

any time, the user may modify any of the values by manipulating Time_Parameter_Selector,

Time_Value, and Reprogram. Each of these values are 4 bits, and is selected using a 2 bit

address. Whenever a parameter is reprogrammed, the FSM should be reset to its starting state.

Divider

The divider is necessary for the timer to properly time the number of seconds for any

particular traffic light state. Using only the clock (50Mhz) as input, it generates a 1 Hz enable,

which is sent to the timer. The signal generated is a pulse that is high for one clock cycle

every 1sec.

Timer

The timer is responsible for taking the start_timer, 1Hz enable, and Time Parameters value to

properly time the traffic light controller. When done counting a particular state, the expired

signal will go high to signal to the FSM that it should change states.

Finite State Machine

The finite state machine controls the ordering for the traffic light. As previously described, it

changes states based on the Walk Register and sensor signals, and with the expired signal.

Describe your FSM using an ASMD chart.

This project is to be conducted by a team of two students. All team members are

responsible about all tasks of the project and should collaborate to achieve a successful

project. You are required to understand all the work done in the project, the part you do

and the part done by the other team members.

Clearly state your assumptions and have your design well documented. Write a

professional report indicating all design stages, modeling and testing of each component

and the final design. Include both a hard copy and a soft copy of your report and all

Verilog files. All team members are required to make a demo of their project in the

project due date. The grading policy for the project is shown below:

Grading Criteria Mark

Demonstration of correct functionality of

components by simulation

40

Demonstration of correct functionality of

project on FPGA

40

Project Documentation and Report

Organization

20

Total 100

i Courtesy of MIT

