COE 405

Design & Modeling of Digital Systems

Course Project – Term 181
Design and Modeling of a RISC Processor
Due on: Wednesday Dec. 12, 2018
In this project, you will design, model in Verilog and synthesize a 16-bit MIPS-like processor. The details about the processor are given below.

Instruction Set Architecture

The 16-bit MIPS-like processor has seven 16-bit general-purpose registers: R1 through R7. R0 is hardwired to zero and cannot be written. There is also one special-purpose 12-bit register, which is the program counter (PC). All instructions are 16 bits and there are three instruction formats: R-type, I-type, and J-type as shown below:

R-type format
4-bit opcode (Op), 3-bit register numbers (Rs, Rt, and Rd), and 3-bit function field (funct)

I-type format
4-bit opcode (Op), 3-bit register numbers (Rs and Rt), and 6-bit immediate constant

J-type format
4-bit opcode (Op) and 12-bit immediate constant

For R-type instructions, Rs and Rt specify the two source register numbers, and Rd specifies the destination register number. The function field can specify at most eight functions for a given opcode. Opcodes 0 and 1 are reserved for R-type instructions.

For I-type instructions, Rs specifies a source register number, and Rt can be a second source or a destination register number. The immediate constant is only 6 bits because of the fixed-size nature of the instruction. The 6-bit immediate constant is assumed to be sign-extended for all instructions except the logical instructions (i.e., ANDI, ORI).
For J-type, a 12-bit immediate constant is used for J (jump), JAL (jump-and-link), and LUI (load upper immediate) instructions.
Instruction Encoding
Sixteen R-type instructions, eleven I-type instructions, and three J-type instructions are defined. These instructions, their meaning, and their encoding are shown below:

	Instr
	Meaning
	Encoding

	AND
	Reg(Rd) = Reg(Rs) & Reg(Rt)
	Op = 0000
	Rs
	Rt
	Rd
	f = 000

	OR
	Reg(Rd) = Reg(Rs) | Reg(Rt)
	Op = 0000
	Rs
	Rt
	Rd
	f = 001

	NOR
	Reg(Rd) = ~(Reg(Rs) | Reg(Rt))
	Op = 0000
	Rs
	Rt
	Rd
	f = 010

	XOR
	Reg(Rd) = Reg(Rs) ^ Reg(Rt)
	Op = 0000
	Rs
	Rt
	Rd
	f = 011

	SLL
	Reg(Rd) = Reg(Rs) << Reg(Rt)
	Op = 0000
	Rs
	Rt
	Rd
	f = 100

	SRL
	Reg(Rd) = Reg(Rs) zero>> Reg(Rt)
	Op = 0000
	Rs
	Rt
	Rd
	f = 101

	SRA
	Reg(Rd) = Reg(Rs) sign>> Reg(Rt)
	Op = 0000
	Rs
	Rt
	Rd
	f = 110

	ROL
	Reg(Rd) = Reg(Rs) rotate<< Reg(Rt)
	Op = 0000
	Rs
	Rt
	Rd
	f = 111

	
	
	
	
	
	
	

	ADD
	Reg(Rd) = Reg(Rs) + Reg(Rt)
	Op = 0001
	Rs
	Rt
	Rd
	f = 000

	SUB
	Reg(Rd) = Reg(Rs) – Reg(Rt)
	Op = 0001
	Rs
	Rt
	Rd
	f = 001

	SLT
	Reg(Rd) = Reg(Rs) signed< Reg(Rt)
	Op = 0001
	Rs
	Rt
	Rd
	f = 010

	SLTU
	Reg(Rd) = Reg(Rs) unsigned< Reg(Rt)
	Op = 0001
	Rs
	Rt
	Rd
	f = 011

	DIV
	Reg(Rd) = Quot(Reg(Rs) / Reg(Rt))
	Op = 0001
	Rs
	Rt
	Rd
	f = 100

	REM
	Reg(Rd) = Rem(Reg(Rs) / Reg(Rt))
	Op = 0001
	Rs
	Rt
	Rd
	f = 101

	MUL
	Reg(Rd) = Reg(Rs) * Reg(Rt)
	Op = 0001
	Rs
	Rt
	Rd
	f = 110

	JR
	PC = lower 12 bits of Reg(Rs)
	Op = 0001
	Rs
	000
	000
	f = 111

	
	
	
	
	
	
	

	LW
	Reg(Rt) = Mem(Reg(Rs) + ext(im6))
	Op = 0010
	Rs
	Rt
	Immediate6

	SW
	Mem(Reg(Rs) + ext(im6)) = Reg(Rt)
	Op = 0011
	Rs
	Rt
	Immediate6

	ANDI
	Reg(Rt) = Reg(Rs) & ext(im6)
	Op = 0110
	Rs
	Rt
	Immediate6

	ORI
	Reg(Rt) = Reg(Rs) | ext(im6)
	Op = 0111
	Rs
	Rt
	Immediate6

	ADDI
	Reg(Rt) = Reg(Rs) + ext(im6)
	Op = 1000
	Rs
	Rt
	Immediate6

	BEQ
	Branch if (Reg(Rs) == Reg(Rt))
	Op = 0100
	Rs
	Rt
	Immediate6

	BNE
	Branch if (Reg(Rs) != Reg(Rt))
	Op = 0101
	Rs
	Rt
	Immediate6

	BLTZ
	Branch if (Reg(Rs) < 0)
	Op = 1100
	Rs
	Rt
	Immediate6

	BLEZ
	Branch if (Reg(Rs) (0)
	Op = 1101
	Rs
	Rt
	Immediate6

	BGTZ
	Branch if (Reg(Rs) > 0)
	Op = 1110
	Rs
	Rt
	Immediate6

	BGEZ
	Branch if (Reg(Rs) (0)
	Op = 1111
	Rs
	Rt
	Immediate6

	J
	PC = Immediate12
	Op = 1001
	Immediate12

	JAL
	R7 = PC + 1, PC = Immediate12
	Op = 1011
	Immediate12

	LUI
	R1 = Immediate12 << 4
	Op = 1010
	Immediate12

There are three shift and one rotate instructions. For shift and rotate instructions, the least significant 4 bits of register Rt are used as the shift/rotate amount. There is only one rotate left (ROL) instruction. To rotate right by n bits, you can rotate left by 16 – n bits, because registers are 16 bits. The Load Upper Immediate (LUI) is of the J-type to have a 12-bit immediate constant loaded into the upper 12 bits of register R1. The LUI can be combined with ORI (or ADDI) to load any 16-bit constant into a register. Although the instruction set is reduced, it is still rich enough to write useful programs. We can have procedure calls and returns using the JAL and JR instructions.
Memory
Your processor will have separate instruction and data memories with 212 = 4096 words each. Each word is 16 bits or 2 bytes. Memory is word addressable. Only words (not bytes) can be read and written to memory, and each address is a word address. This will simplify the processor implementation. The PC contains a word address (not a byte address). Therefore, it is sufficient to increment the PC by 1 (rather than 2) to point to the next instruction in memory. Also, the Load and Store instructions can only load and store words. There is no instruction to load or store a byte in memory.

Addressing Modes
For branch instructions (BEQ, BNE, BLTZ, BLEZ, BGTZ and BGEZ), PC-relative addressing mode is used: PC = PC + sign-extend(immediate6). For jump instructions (J and JAL), direct addressing is used: PC = Immediate12. For LW and SW instructions, base-displacement addressing mode is used. The base address in register Rs is added to the sign-extended immediate6 to compute the memory address.

Program Execution
The program will be loaded and will start at address 0 in the instruction memory. The data segment will be loaded and will start also at address 0 in the data memory. To terminate the execution of a program, the last instruction in the program can jump or branch to itself indefinitely.

Calculator Application
You need to develop a calculator application for performing addition, subtraction, multiplication and division of any entered two integer 16-bit numbers. You need to interface with the LCD screen and keypad to display a message on the LCD screen asking the user to enter the first number and then read the input from the keypad. Then, display the entered number in decimal. After that, display a message asking the user to enter the second number, read it and display it in decimal. Finally, ask the user to enter the requested operation, read the request, perform the operation and display the result on the LCD screen in decimal.

Project Report

The report document must contain sections highlighting the following:

1 – Design and Implementation

· Specify clearly the design giving detailed description of the datapath, its components, control, and the implementation details (highlighting the design choices you made and why, and any notable features that your processor might have.) Document clearly design alternatives explored and why a given design is selected.

· Provide drawings of the component circuits and the overall datapath.

· Provide a complete description of the control logic and the control signals. Provide a table giving the control signal values for each instruction.
· Provide a complete description of the forwarding logic, the cases that were handled, and the cases that stall the pipeline
· Use a hierarchical Verilog modeling style when modeling your processor. Your CPU should be composed of a control unit and datapath. The datapath should be composed of ALU, Register file, Instruction Memory, Data Memory and other necessary components.
· Provide list of sources for any parts of your design that are not entirely yours (if any).
· Carry out the design and implementation with the following aspects in mind:

· Consider alternative design solutions and justify your design selection

· Correctness of the individual components

· Correctness of the overall design when wiring the components together

· Completeness: all instructions were implemented properly, detecting dependences and forwarding was handled properly, and stalling the pipeline was handled properly for all cases.
2 – Simulation and Testing

· Carry out the simulation of the processor developed using Modelsim or Isim.
· Test each of the components individually and demonstrate its correct operation including the ALU and register file.

· Describe the test programs that you used to test your design with enough comments describing the program, its inputs, and its expected output. List all the instructions that were tested and work correctly. List all the instructions that do not run properly.
· Also provide snapshots of the Simulator window with your test program loaded and showing the simulation output results.

· Synthesize the processor on FPGA and demonstrate its correct functionality by correct implementation of the calculator application.

3 – Teamwork

· This project is a team work project with up to four students per team. Make sure to write the names of all the group members on the project report title page.

· Each group should assign a group leader that leads the conduction of the project, divide the project tasks among the team members.
· Project tasks should be divided among the group members so that each group member contributes equally in the project and everyone is involved in all the following activities:

· Design and Implementation

· Simulation and Testing

· Synthesis and FPGA implementation

· Interfacing with keypad

· Interfacing with LCD screen

· Design and results reporting

· Come up with a project plan detailing the tasks to be performed in the project, their planned start and finish dates and the team member primarily responsible for performing the task. Submit the project plan by Thursday, Oct. 25.

· Clearly show in the report the work done by each group member, and how the work deviated from the proposed plan.
· Each group member will be evaluated based on his contribution in the project. Thus, it is expected that each group member could have a different mark in the project.

· Students who help other team members should mention that to earn credit for that.

Submission Guidelines
All submissions will be done through WebCT.

Attach one zip file containing all Verilog files used in your design, a video demo of your project, as well as the report document.

Submit also a hard copy of the report during the class lecture.

Students are expected to report project progress every two weeks.
The deadlines for submissions are given below:

	Task
	Deadline

	Formation of project groups
	Oct. 18, 2018

	Submission of project plan
	Oct. 25, 2018

	Submission of Progress Report
	Nov. 24, 2018

	Submission of Final Report
	Dec. 12, 2018

Grading policy
	Grading Criteria
	Mark

	Demonstration of correct functionality of components and whole processor design by simulation
	60

	Demonstration of correct functionality of Calculator Application on FPGA
	25

	Project Documentation and Report Organization
	15

	Total
	100

The project will be evaluated based on the final report, project demonstration and oral project evaluation with all team members.

funct3

Op4

Rs3

Rt3

Rd3

Immediate6

Op4

Rs3

Rt3

Immediate12

Op4

