
 

 

 

COE 405 

Design & Modeling of Digital Systems 

 

Course Project – Term 152 

Design and Modeling of a Pipelined RISC Processor  
Due on: Tuesday May 3, 2016 

 
 

 

In this project, you will design, model in Verilog and synthesize a 16-bit MIPS-like 

processor. The details about the processor are given below. 

 

Instruction Set Architecture 

The 16-bit MIPS-like processor has seven 16-bit general-purpose registers: R1 through R7. 

R0 is hardwired to zero and cannot be written. There is also one special-purpose 12-bit 

register, which is the program counter (PC). All instructions are 16 bits and there are three 

instruction formats: R-type, I-type, and J-type as shown below: 

R-type format 

4-bit opcode (Op), 3-bit register numbers (Rs, Rt, and Rd), and 3-bit function field (funct) 

 

 

I-type format 

4-bit opcode (Op), 3-bit register numbers (Rs and Rt), and 6-bit immediate constant 

 

 

J-type format 

4-bit opcode (Op) and 12-bit immediate constant 

 

 

For R-type instructions, Rs and Rt specify the two source register numbers, and Rd specifies 

the destination register number. The function field can specify at most eight functions for a 

given opcode. Opcodes 0 and 1 are reserved for R-type instructions.  

For I-type instructions, Rs specifies a source register number, and Rt can be a second source 

or a destination register number. The immediate constant is only 6 bits because of the fixed-

size nature of the instruction. The 6-bit immediate constant is assumed to be sign-extended 

for all instructions except the logical instructions (i.e., ANDI, ORI). 

For J-type, a 12-bit immediate constant is used for J (jump), JAL (jump-and-link), and LUI 

(load upper immediate) instructions. 

 

Instruction Encoding 

Sixteen R-type instructions, eleven I-type instructions, and three J-type instructions are 

defined. These instructions, their meaning, and their encoding are shown below: 

 

funct3 Op4 Rs3 Rt3 Rd3 

Immediate6 Op4 Rs3 Rt3 

Immediate12 Op4 



Instr Meaning Encoding 

AND Reg(Rd) = Reg(Rs) & Reg(Rt) Op = 0000 Rs Rt Rd f = 000 

OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op = 0000 Rs Rt Rd f = 001 

NOR Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op = 0000 Rs Rt Rd f = 010 

XOR Reg(Rd) = Reg(Rs) ^ Reg(Rt) Op = 0000 Rs Rt Rd f = 011 

SLL Reg(Rd) = Reg(Rs) << Reg(Rt) Op = 0000 Rs Rt Rd f = 100 

SRL Reg(Rd) = Reg(Rs) zero>> Reg(Rt) Op = 0000 Rs Rt Rd f = 101 

SRA Reg(Rd) = Reg(Rs) sign>> Reg(Rt) Op = 0000 Rs Rt Rd f = 110 

ROL Reg(Rd) = Reg(Rs) rotate<< Reg(Rt) Op = 0000 Rs Rt Rd f = 111 

       

ADD Reg(Rd) = Reg(Rs) + Reg(Rt) Op = 0001 Rs Rt Rd f = 000 

SUB  Reg(Rd) = Reg(Rs) – Reg(Rt) Op = 0001 Rs Rt Rd f = 001 

SLT Reg(Rd) = Reg(Rs) signed< Reg(Rt)  Op = 0001 Rs Rt Rd f = 010 

SLTU Reg(Rd) = Reg(Rs) unsigned< Reg(Rt)  Op = 0001 Rs Rt Rd f = 011 

DIV Reg(Rd) = Quot(Reg(Rs) / Reg(Rt)) Op = 0001 Rs Rt Rd f = 100 

REM Reg(Rd) = Rem(Reg(Rs) / Reg(Rt)) Op = 0001 Rs Rt Rd f = 101 

MUL Reg(Rd) = Reg(Rs) * Reg(Rt) Op = 0001 Rs Rt Rd f = 110 

JR PC = lower 12 bits of Reg(Rs) Op = 0001 Rs 000 000 f = 111 

       

LW Reg(Rt) = Mem(Reg(Rs) + ext(im6)) Op = 0010 Rs Rt Immediate6 

SW Mem(Reg(Rs) + ext(im6)) = Reg(Rt) Op = 0011 Rs Rt Immediate6 

ANDI Reg(Rt) = Reg(Rs) & ext(im6) Op = 0110 Rs Rt Immediate6 

ORI Reg(Rt) = Reg(Rs) | ext(im6) Op = 0111 Rs Rt Immediate6 

ADDI Reg(Rt) = Reg(Rs) + ext(im6) Op = 1000 Rs Rt Immediate6 

BEQ Branch if (Reg(Rs) == Reg(Rt)) Op = 0100 Rs Rt Immediate6 

BNE Branch if (Reg(Rs) != Reg(Rt)) Op = 0101 Rs Rt Immediate6 

BLTZ Branch if (Reg(Rs) < 0) Op = 1100 Rs Rt Immediate6 

BLEZ Branch if (Reg(Rs)  0) Op = 1101 Rs Rt Immediate6 

BGTZ Branch if (Reg(Rs) > 0) Op = 1110 Rs Rt Immediate6 

BGEZ Branch if (Reg(Rs)  0) Op = 1111 Rs Rt Immediate6 

J PC = Immediate12 Op = 1001 Immediate12 

JAL R7 = PC + 1, PC = Immediate12 Op = 1011 Immediate12 

LUI R1 = Immediate12 << 4 Op = 1010 Immediate12 

 

There are three shift and one rotate instructions. For shift and rotate instructions, the least 

significant 4 bits of register Rt are used as the shift/rotate amount. There is only one rotate 

left (ROL) instruction. To rotate right by n bits, you can rotate left by 16 – n bits, because 

registers are 16 bits. The Load Upper Immediate (LUI) is of the J-type to have a 12-bit 

immediate constant loaded into the upper 12 bits of register R1. The LUI can be combined 

with ORI (or ADDI) to load any 16-bit constant into a register. Although the instruction set is 

reduced, it is still rich enough to write useful programs. We can have procedure calls and 

returns using the JAL and JR instructions. 

Memory 

Your processor will have separate instruction and data memories with 212 = 4096 words each.  

Each word is 16 bits or 2 bytes. Memory is word addressable. Only words (not bytes) can be 



read and written to memory, and each address is a word address. This will simplify the 

processor implementation. The PC contains a word address (not a byte address). Therefore, it 

is sufficient to increment the PC by 1 (rather than 2) to point to the next instruction in 

memory. Also, the Load and Store instructions can only load and store words. There is no 

instruction to load or store a byte in memory. 

Addressing Modes 

For branch instructions (BEQ, BNE, BLTZ, BLEZ, BGTZ and BGEZ), PC-relative 

addressing mode is used: PC = PC + sign-extend(immediate6). For jump instructions (J and 

JAL), direct addressing is used: PC = Immediate12. For LW and SW instructions, base-

displacement addressing mode is used. The base address in register Rs is added to the sign-

extended immediate6 to compute the memory address. 

 

Building a Pipelined Processor 

Design and implement a pipelined datapath and its control logic. A five-stage pipeline should 

be constructed similar to the pipeline used in the MIPS processor. Add pipeline registers 

between stages. Design the control logic to detect data dependencies among instructions and 

implement the forwarding, hazard detection and stall unit. For branch instructions, reduce the 

branch delay penalty to one cycle only. If the branch is taken, then one instruction is flushed.  

 

Program Execution 

The program will be loaded and will start at address 0 in the instruction memory. The data 

segment will be loaded and will start also at address 0 in the data memory. To terminate the 

execution of a program, the last instruction in the program can jump or branch to itself 

indefinitely. 

 

Calculator Application 

You need to develop a calculator application for performing addition, subtraction, 

multiplication and division of any entered two integer 16-bit numbers. You need to interface 

with the LCD screen and switches to display a message on the LCD screen asking the user to 

enter the first number and then read the input from the switches. Then, display the entered 

number in decimal. After that, display a message asking the user to enter the second number, 

read it and display it in decimal. Finally, ask the user to enter the requested operation, read 

the request, perform the operation and display the result on the LCD screen in decimal.  

 

Project Report 

The report document must contain sections highlighting the following:  

1 – Design and Implementation 

 Specify clearly the design giving detailed description of the datapath, its components, 

control, and the implementation details (highlighting the design choices you made and 

why, and any notable features that your processor might have.) Document clearly 

design alternatives explored and why a given design is selected.  

 Provide drawings of the component circuits and the overall datapath. 

 Provide a complete description of the control logic and the control signals. Provide a 

table giving the control signal values for each instruction.  



 Provide a complete description of the forwarding logic, the cases that were handled, 

and the cases that stall the pipeline 

 Use a hierarchical Verilog modeling style when modeling your processor. Your CPU 

should be composed of a control unit and datapath. The datapath should be composed 

of ALU, Register file, NextPC Block, Instruction Memory, Data Memory and other 

necessary components. 

 Provide list of sources for any parts of your design that are not entirely yours (if any). 

 Carry out the design and implementation with the following aspects in mind: 

- Consider alternative design solutions and justify your design selection 

- Correctness of the individual components 

- Correctness of the overall design when wiring the components together 

- Completeness: all instructions were implemented properly, detecting dependences 

and forwarding was handled properly, and stalling the pipeline was handled 

properly for all cases. 

 

2 – Simulation and Testing 

 Carry out the simulation of the processor developed using Modelsim or Isim. 

 Test each of the components individually and demonstrate its correct operation 

including the ALU and register file. 

 Describe the test programs that you used to test your design with enough comments 

describing the program, its inputs, and its expected output. List all the instructions that 

were tested and work correctly. List all the instructions that do not run properly. 

 Also provide snapshots of the Simulator window with your test program loaded and 

showing the simulation output results. 

 Synthesize the processor on FPGA and demonstrate its correct functionality by 

correct implementation of the calculator application. 

 

3 – Teamwork 

 This project is a team work project with up to four students per team. Make sure to 

write the names of all the group members on the project report title page. 

 Each group should assign a group leader that leads the conduction of the project, 

divide the project tasks among the team members.  

 Project tasks should be divided among the group members so that each group member 

contributes equally in the project and  everyone is involved in all the following 

activities: 

- Design and Implementation 

- Simulation and Testing 

- Synthesis and FPGA implementation 

- Design and results reporting 

 Come up with a project plan detailing the tasks to be performed in the project, their 

planned start and finish dates and the team member primarily responsible for 

performing the task.   Submit the project plan by Sunday April 3.  

 Clearly show in the report the work done by each group member, and how the work 

deviated from the proposed plan.  

 Each group member will be evaluated based on his contribution in the project. Thus, it 

is expected that each group member could have a different mark in the project. 

 Students who help other team members should mention that to earn credit for that. 

 



 

Submission Guidelines 

All submissions will be done through WebCT. 

Attach one zip file containing all Verilog files used in your design, a video demo of your 

project, as well as the report document. 

Submit also a hard copy of the report during the class lecture. 

 

Grading policy 

 

Grading Criteria Mark 

Demonstration of correct functionality of 

components and whole processor design by 

simulation 

40 

Demonstration of correct functionality of 

Calculator Application on FPGA 

40 

Project Documentation and Report 

Organization 

20 

Total 100 

 
 

The project will be evaluated based on the final report, project demonstration and oral project 

evaluation with all team members. 

 

Note that you if you implement the CPU as a single-cycle CPU without implementing 

pipelining, you will loose 15% of the project mark even if your design is 100% functional. 

For example, if you score a total of 90% based on the three graded criteria, then your mark 

will become 76.5. 

 


