

COE 405

Design & Modeling of Digital Systems

Course Project#2 – Term 122

RISC Processor Design
Due on: Wednesday May 15, 2013

In this project, you will design and synthesize a 16-bit MIPS-like processor. The details about

the processor are given below.

Instruction Set Architecture

The 16-bit MIPS-like processor has seven 16-bit general-purpose registers: R1 through R7.

R0 is hardwired to zero and cannot be written. There is also one special-purpose 12-bit

register, which is the program counter (PC). All instructions are 16 bits and there are three

instruction formats: R-type, I-type, and J-type as shown below:

R-type format

4-bit opcode (Op), 3-bit register numbers (Rs, Rt, and Rd), and 3-bit function field (funct)

I-type format

4-bit opcode (Op), 3-bit register numbers (Rs and Rt), and 6-bit immediate constant

J-type format

4-bit opcode (Op) and 12-bit immediate constant

For R-type instructions, Rs and Rt specify the two source register numbers, and Rd specifies

the destination register number. The function field can specify at most eight functions for a

given opcode. Opcodes 0 and 1 are reserved for R-type instructions.

For I-type instructions, Rs specifies a source register number, and Rt can be a second source

or a destination register number. The immediate constant is only 6 bits because of the fixed-

size nature of the instruction. The 6-bit immediate constant is assumed to be sign-extended

for all instructions.

For J-type, a 12-bit immediate constant is used for J (jump), JAL (jump-and-link), and LUI

(load upper immediate) instructions.

Instruction Encoding

Sixteen R-type instructions, eleven I-type instructions, and three J-type instructions are

defined. These instructions, their meaning, and their encoding are shown below:

funct
3
 Op

4
 Rs

3
 Rt

3
 Rd

3

Immediate
6
 Op

4
 Rs

3
 Rt

3

Immediate
12

 Op
4

Instr Meaning Encoding

AND Reg(Rd) = Reg(Rs) & Reg(Rt) Op = 0000 Rs Rt Rd f = 000

OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op = 0000 Rs Rt Rd f = 001

NOR Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op = 0000 Rs Rt Rd f = 010

XOR Reg(Rd) = Reg(Rs) ^ Reg(Rt) Op = 0000 Rs Rt Rd f = 011

SLL Reg(Rd) = Reg(Rs) << Reg(Rt) Op = 0000 Rs Rt Rd f = 100

SRL Reg(Rd) = Reg(Rs) zero>> Reg(Rt) Op = 0000 Rs Rt Rd f = 101

SRA Reg(Rd) = Reg(Rs) sign>> Reg(Rt) Op = 0000 Rs Rt Rd f = 110

ROL Reg(Rd) = Reg(Rs) rotate<< Reg(Rt) Op = 0000 Rs Rt Rd f = 111

ADD Reg(Rd) = Reg(Rs) + Reg(Rt) Op = 0001 Rs Rt Rd f = 000

SUB Reg(Rd) = Reg(Rs) – Reg(Rt) Op = 0001 Rs Rt Rd f = 001

SLT Reg(Rd) = Reg(Rs) signed< Reg(Rt) Op = 0001 Rs Rt Rd f = 010

SLTU Reg(Rd) = Reg(Rs) unsigned< Reg(Rt) Op = 0001 Rs Rt Rd f = 011

DIV Reg(Rd) = Quot(Reg(Rs) / Reg(Rt)) Op = 0001 Rs Rt Rd f = 100

REM Reg(Rd) = Rem(Reg(Rs) / Reg(Rt)) Op = 0001 Rs Rt Rd f = 101

MUL Reg(Rd) = Reg(Rs) * Reg(Rt) Op = 0001 Rs Rt Rd f = 110

JR PC = lower 12 bits of Reg(Rs) Op = 0001 Rs 000 000 f = 111

LW Reg(Rt) = Mem(Reg(Rs) + ext(im
6
)) Op = 0010 Rs Rt Immediate

6

SW Mem(Reg(Rs) + ext(im
6
)) = Reg(Rt) Op = 0011 Rs Rt Immediate

6

ANDI Reg(Rt) = Reg(Rs) & ext(im6) Op = 0110 Rs Rt Immediate
6

ORI Reg(Rt) = Reg(Rs) | ext(im6) Op = 0111 Rs Rt Immediate
6

ADDI Reg(Rt) = Reg(Rs) + ext(im
6
) Op = 1000 Rs Rt Immediate

6

BEQ Branch if (Reg(Rs) == Reg(Rt)) Op = 0100 Rs Rt Immediate
6

BNE Branch if (Reg(Rs) != Reg(Rt)) Op = 0101 Rs Rt Immediate
6

BLTZ Branch if (Reg(Rs) < 0) Op = 1100 Rs Rt Immediate
6

BLEZ Branch if (Reg(Rs)  0) Op = 1101 Rs Rt Immediate
6

BGTZ Branch if (Reg(Rs) > 0) Op = 1110 Rs Rt Immediate
6

BGEZ Branch if (Reg(Rs)  0) Op = 1111 Rs Rt Immediate
6

J PC = Immediate
12

 Op = 1001 Immediate
12

JAL R7 = PC + 1, PC = Immediate
12

 Op = 1011 Immediate
12

LUI R1 = Immediate
12

 << 4 Op = 1010 Immediate
12

There are three shift and one rotate instructions. For shift and rotate instructions, the least

significant 4 bits of register Rt are used as the shift/rotate amount. There is only one rotate

left (ROL) instruction. To rotate right by n bits, you can rotate left by 16 – n bits, because

registers are 16 bits. The Load Upper Immediate (LUI) is of the J-type to have a 12-bit

immediate constant loaded into the upper 12 bits of register R1. The LUI can be combined

with ORI (or ADDI) to load any 16-bit constant into a register. Although the instruction set is

reduced, it is still rich enough to write useful programs. We can have procedure calls and

returns using the JAL and JR instructions.

Memory

Your processor will have separate instruction and data memories with 2
12

 = 4096 words each.

Each word is 16 bits or 2 bytes. Memory is word addressable. Only words (not bytes) can be

read and written to memory, and each address is a word address. This will simplify the

processor implementation. The PC contains a word address (not a byte address). Therefore, it

is sufficient to increment the PC by 1 (rather than 2) to point to the next instruction in

memory. Also, the Load and Store instructions can only load and store words. There is no

instruction to load or store a byte in memory.

Addressing Modes

For branch instructions (BEQ, BNE, BLTZ, BLEZ, BGTZ and BGEZ), PC-relative

addressing mode is used: PC = PC + sign-extend(immediate
6
). For jump instructions (J and

JAL), direct addressing is used: PC = Immediate
12

. For LW and SW instructions, base-

displacement addressing mode is used. The base address in register Rs is added to the sign-

extended immediate
6
 to compute the memory address.

Program Execution

The program will be loaded and will start at address 0 in the instruction memory. The data

segment will be loaded and will start also at address 0 in the data memory. To terminate the

execution of a program, the last instruction in the program can jump or branch to itself

indefinitely.

Testing

To test your CPU, implement any sort procedure of your choice and use this procedure to sort

an array of 8 words of your choice. Display the memory content of these words to be sorted

on the LCD screen and control the speed of the CPU having four different speeds of the

clock: 1HZ, 10HZ, 50HZ and 100HZ.

Project Report

The report document must contain sections highlighting the following:

1 – Design and Implementation

 Specify clearly the data path design

 Specify the control unit using ASMD chart.

 Carry out the design and implementation with the following aspects in mind:

- Correctness of the individual components

- Correctness of the overall design when wiring the components together

- Completeness: all instructions were implemented properly

2 – Simulation and Testing

 Carry out the simulation of the processor developed using Modelsim.

 Test each of the components individually and demonstrate its correct operation

including the ALU and register file.

 Describe the test programs that you used to test your design with enough comments

describing the program, its inputs, and its expected output. List all the instructions that

were tested and work correctly. List all the instructions that do not run properly.

 Also provide snapshots of the Simulator window with your test program loaded and

showing the simulation output results.

 Synthesize the processor on FPGA and demonstrate its correct functionality by

sorting an array of data displayed on LCD.

3 – Teamwork

 This project is a team work project with two students per team. Make sure to write the

names of all the group members on the project report title page.

 Each group should assign a group leader that leads the conduction of the project,

divide the project tasks among the team members.

 Project tasks should be divided among the group members so that each group member

contributes equally in the project and everyone is involved in all the following

activities:

- Design and Implementation

- Simulation and Testing

- Synthesis and FPGA implementation

- Design and results reporting

 Clearly show the work done by each group member

 Students who help other team members should mention that to earn credit for that.

Submission Guidelines

All submissions will be done through WebCT.

Attach one zip file containing all verilog and constraint files used in your design, a video

demo of your project, as well as the report document.

Submit also a hard copy of the report during the class lecture.

Grading policy:

Grading Criteria Mark

Demonstration of correct functionality of

components and whole design by simulation

50

Demonstration of correct functionality of

project on FPGA

30

Project Documentation and Report

Organization

20

Total 100

