
Page 1 of 11

 April 4, 2013

COMPUTER ENGINEERING DEPARTMENT

COE 405

DESIGN & MODELING OF DIGITAL SYSTEMS

Midterm Exam

Second Semester (122)

Time: 1:00-3:30 PM

OPEN BOOK EXAM

Student Name : __KEY___

Student ID. : __

Question Max Points Score

Q1 20

Q2 15

Q3 30

Q4 25

Q5 10

Total 100

Dr. Aiman El-Maleh

Page 2 of 11

[20 Points]

(Q1) It is required to design an iterative combinational circuit that receives an n-bit number

X and computes the result Y=3*X. The design should be based on a one-bit cell (i.e.

processing one bit Xi) that can be copied n times to construct the n-bit design. (Hint: 3*X =

X+X+X. Note that the maximum carry from one cell to the next is 2.)

i) Determine the inputs and outputs for a one-bit cell.

ii) Derive the truth table for a one-bit cell.

iii) Derive minimized sum-of-product equations for a one-bit cell.

iv) Show the block diagram for a 4-bit design.

Page 3 of 11

Page 4 of 11

[15 Points]

(Q2) It is required to design a synchronous sequential circuit that receives a serial input

X and produces a serial output Z. The output Z will be 1 if the input has been

alternating for at least 3 clock periods. Assume the existence of an asynchrnous reset

input to reset the machine to a reset state. Draw the state diagram of the circuit

assuming a Mealy model. You are not required to derive the equations and the circuit.

The following is an example of some input and output streams:

Example:

Input X 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0

Output Z 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0

Page 5 of 11

[30 Points]

(Q3) The ASMD chart given below describes a state machine that counts 1’s in a word and

terminates activity as soon as possible. The machine remains in its reset state, S_idle, until an

external agent asserts start. This action asserts the output, load_temp, which will cause data

to be loaded into register temp when the state makes a transition to S_counting at the next

active edge of clk. The machine remains in S_counting while temp contains a 1. Two actions

occur concurrently at each subsequent clock: (1) temp is shifted towards its LSB and (2)

temp[0] is added to bit_count. When temp finally has a 1 in only the LSB, the machine’s

state moves to S_waiting, where done is asserted. The state remains in S_waiting until start is

reasserted. Assume that when the synchrnous reset input is asserted the machine is reset to

the state S_idle and bit_count and temp are initialized to 0.

i) Show the design of the data-path unit.

ii) Show the design of the control unit using the following state assignment: S_idle=00,

S_counting =01, and S_waiting=10.

Page 6 of 11

i) DataPath Unit:

ii) Control Unit:

C.S. Input N.S. Output

start temp_gt_1 done busy load_temp shift_add clear

S_idle 0 x S_idle 0 0 0 0 0

S_idle 1 x S_counting 0 0 1 0 0

S_counting x 1 S_counting 0 1 0 1 0

S_counting x 0 S_waiting 0 1 0 1 0

S_waiting 1 x S_counting 1 0 1 0 1

S_waiting 0 x S_waiting 1 0 0 0 0

Page 7 of 11

Assuming the two flip flops F1 and F2 for storing the machine state and the state

assignment: S_idle=00, S_counting =01, and S_waiting=10, the contrl signals will be as

follows:

 done = F1 F0’

 busy = F1’ F0

 shift_add = F1’ F0

 load_temp = F0’ start

clear = F1 F0’ start

Page 8 of 11

[25 Points]

(Q4) A JK flip-flop with the following interface is given below:

i) Write a JKFF module with behavioral model for a rising-edge triggered JK

flip-flop.

module JKFF (output reg Q, output QB, input J, K, CLK);

assign QB = ~Q;

always @(posedge CLK)

 case ({J,K})

 2'b00: Q <= Q;

 2'b01: Q <= 0;

 2'b10: Q <= 1;

 2'b11: Q <= ~Q;

 endcase

endmodule

ii) Using the JK flip-flop modeled in (i) model the 1-bit modular binary counter

given below.

module OneBitCount (output Q, Cout, input Reset, Enable, CLK);

 and (J, ~Reset, Enable);

 or (K, Reset, Enable);

 and (Cout, Enable, Q);

 JKFF F (Q, , J, K, CLK);

endmodule

iii) Based on the 1-bit modular binary counter modeled in (ii), build a 3-bit

binary up counter as shown below. The counter does not count when the count

enable is 0. Otherwise, it counts on the rising-edge of the clock.

Page 9 of 11

module ThreeBitCount (output Q2, Q1, Q0, Cout, input Reset, Enable, CLK);

 OneBitCount F0 (Q0, Cout0, Reset, Enable, CLK);

 OneBitCount F1 (Q1, Cout1, Reset, Cout0, CLK);

 OneBitCount F2 (Q2, Cout, Reset, Cout1, CLK);

endmodule

iv) Write a test bench to test the 3-bit counter using the data given below. You

need to generate the clock signal inside the test bench with a period of 10 and

50% duty cycle. The test bench should simulate the circuit for 300 delay units.

Time Action

20 Reset=1

35 Reset=0

50 Enable=1

90 Enable=0

120 Enable=1

module t_ThreeBitCount ();

 wire Q2, Q1, Q0, Cout;

 reg CLK, Reset, Enable;

 ThreeBitCount C0 (Q2, Q1, Q0, Cout, Reset, Enable, CLK);

 initial #300 $finish;

 initial begin

 CLK = 0;

 forever #5 CLK = ~CLK;

 end

 initial fork

 #20 Reset = 1;

Page 10 of 11

 #35 Reset = 0;

 #50 Enable = 1;

 #90 Enable = 0;

 #120 Enable = 1;

 join

endmodule

Page 11 of 11

[10 Points]

(Q5) It is required to model a generic n-bit Ripple Carry Adder (RCA). A 4-bit RCA is

shown below:

Model a behavioral n-bit RCA using repetitive constructs.

module RCA #(parameter n=4)

(output reg [n-1:0] Sum, output Cout, input [n-1:0] A, B, input Cin);

reg [n-1:0] Carry;

integer i;

assign Cout = Carry[n-1];

always @(A, B, Cin) begin

 Sum[0] = A[0] ^ B[0] ^ Cin;

 Carry[0] = A[0] & B[0] | Cin & (A[0] ^ B[0]);

 for (i=1; i < n ; i=i+1) begin

 Sum[i] = A[i] ^ B[i] ^ Carry[i-1];

 Carry[i] = A[i] & B[i] | Carry[i-1] & (A[i] ^ B[i]);

 end

end

endmodule

