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[20 Points] 

(Q1) It is required to design an iterative combinational circuit that receives an n-bit number 

X and computes the result Y=3*X. The design should be based on a one-bit cell (i.e. 

processing one bit Xi) that can be copied n times to construct the n-bit design. (Hint: 3*X = 

X+X+X. Note that the maximum carry from one cell to the next is 2.) 

i) Determine the inputs and outputs for a one-bit cell. 

ii) Derive the truth table for a one-bit cell. 

iii) Derive minimized sum-of-product equations for a one-bit cell. 

iv) Show the block diagram for a 4-bit design. 
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[15 Points] 

 

(Q2) It is required to design a synchronous  sequential circuit that receives a serial input 

X and produces a serial output Z. The output Z will be 1 if the input has been 

alternating for at least 3 clock periods.  Assume the existence of an asynchrnous reset 

input to reset the machine to a reset state. Draw the state diagram of the circuit 

assuming a Mealy model. You are not required to derive the equations and the circuit. 

The following is an example of some input and output streams:   

    
 

Example: 

 

Input X 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 

Output Z 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 
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[30 Points] 

(Q3) The ASMD chart given below describes a state machine that counts 1’s in a word and 

terminates activity as soon as possible. The machine remains in its reset state, S_idle, until an 

external agent asserts start. This action asserts the output, load_temp, which will cause data 

to be loaded into register temp when the state makes a transition to S_counting at the next 

active edge of clk. The machine remains in S_counting while temp contains a 1. Two actions 

occur concurrently at each subsequent clock: (1) temp is shifted towards its LSB and (2) 

temp[0] is added to bit_count. When temp finally has a 1 in only the LSB, the machine’s 

state moves to S_waiting, where done is asserted. The state remains in S_waiting until start is 

reasserted. Assume that when the synchrnous reset input is asserted the machine is reset to 

the state  S_idle and bit_count and temp are initialized to 0. 

i) Show the design of the data-path unit. 

ii) Show the design of the control unit using the following state assignment: S_idle=00, 

S_counting =01, and S_waiting=10. 
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i) DataPath Unit: 

 

 

 
 

ii) Control Unit: 

 
 

C.S. Input N.S. Output 

start temp_gt_1 done busy load_temp shift_add clear 

S_idle 0 x S_idle 0 0 0 0 0 

S_idle 1 x S_counting 0 0 1 0 0 

S_counting x 1 S_counting 0 1 0 1 0 

S_counting x 0 S_waiting 0 1 0 1 0 

S_waiting 1 x S_counting 1 0 1 0 1 

S_waiting 0 x S_waiting 1 0 0 0 0 
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Assuming the two flip flops F1 and F2 for storing the machine state and the state 

assignment: S_idle=00, S_counting =01, and S_waiting=10, the contrl signals will be as 

follows: 
 

 done  = F1 F0’  

 

 busy = F1’ F0 

 

 shift_add = F1’ F0 

 

 load_temp = F0’ start 
 

clear  = F1 F0’ start 
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[25 Points] 
 

(Q4)  A JK flip-flop with the following interface is given below:  

 

i) Write a JKFF module with behavioral model for a rising-edge triggered JK 

flip-flop. 

module JKFF (output reg Q, output QB, input J, K, CLK); 

assign QB = ~Q; 

always @( posedge CLK) 

 case ({J,K}) 

  2'b00: Q <= Q; 

  2'b01: Q <= 0; 

  2'b10: Q <= 1; 

  2'b11: Q <= ~Q; 

 endcase 

endmodule 

 

ii) Using the JK flip-flop modeled in (i) model the 1-bit modular binary counter 

given below. 

 

module OneBitCount (output  Q, Cout, input Reset, Enable, CLK); 

 and (J, ~Reset, Enable); 

 or (K, Reset, Enable); 

 and (Cout, Enable, Q); 

 JKFF F (Q, , J, K, CLK); 

endmodule 

 

iii) Based on the 1-bit  modular binary counter modeled in (ii), build a 3-bit 

binary up counter as shown below. The counter does not count when the count 

enable is 0. Otherwise, it counts on the rising-edge of the clock. 
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module ThreeBitCount (output  Q2, Q1, Q0, Cout, input Reset, Enable, CLK);  

 OneBitCount F0 (Q0, Cout0, Reset, Enable, CLK); 

 OneBitCount F1 (Q1, Cout1, Reset, Cout0, CLK); 

 OneBitCount F2 (Q2, Cout, Reset, Cout1, CLK); 

endmodule 

 

 

iv) Write a test bench to test the 3-bit counter using the data given below. You 

need to generate the clock signal inside the test bench with a period of 10 and 

50% duty cycle. The test bench should simulate the circuit for 300 delay units. 

 

Time Action 

20 Reset=1 

35 Reset=0 

50 Enable=1 

90 Enable=0 

120 Enable=1 
 

module t_ThreeBitCount (); 

 wire Q2, Q1, Q0, Cout; 

 reg CLK, Reset, Enable; 

 ThreeBitCount C0 (Q2, Q1, Q0, Cout, Reset, Enable, CLK);  

 initial #300 $finish; 

 initial begin 

 CLK = 0; 

 forever #5 CLK = ~CLK; 

 end 

 initial fork 

 #20 Reset = 1; 
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 #35 Reset = 0; 

 #50 Enable = 1;  

 #90 Enable = 0;  

 #120 Enable = 1;  

 join 

endmodule 
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[10 Points] 
 

(Q5)  It is required to model a generic n-bit Ripple Carry Adder (RCA).  A 4-bit RCA is 

shown below: 

 

 
 

 

Model a behavioral  n-bit RCA using repetitive constructs. 

 

module RCA #(parameter n=4) 

(output reg [n-1:0] Sum, output Cout, input [n-1:0] A, B, input Cin); 

 

reg [n-1:0] Carry; 

integer i; 

assign Cout = Carry[n-1]; 

always @(A, B, Cin) begin 

 Sum[0] = A[0] ^ B[0] ^ Cin; 

 Carry[0] = A[0] & B[0] | Cin & (A[0] ^ B[0]); 

 for (i=1; i < n ; i=i+1) begin 

     Sum[i] = A[i] ^ B[i] ^ Carry[i-1]; 

     Carry[i] = A[i] & B[i] | Carry[i-1] & (A[i] ^ B[i]);  

 end 

end 

endmodule 


