
Page 1 of 13

 May 25, 2017

COMPUTER ENGINEERING DEPARTMENT

COE 405

DESIGN & MODELING OF DIGITAL SYSTEMS

Final Exam

Second Semester (162)

Time: 7:00-10:00 PM

Student Name : _KEY___

Student ID. : __

Question Max Points Score

Q1 10

Q2 12

Q3 10

Q4 16

Q5 24

Total 72

Dr. Aiman El-Maleh

Page 2 of 13

 [10 Points]

(Q1) Consider the logic network defined by the following expression:

x = a b c + a b d + a b' c' d' + a' b c' d' + a' b' c + a' b' d + c e + c f + d e + d f

Compute the weight of the double cube divisors d1 = a b + a' b’ and d2 = c + d. Extract the

double cube divisor with the highest weight and show the resulting network after extraction

and the number of literals saved.

Page 3 of 13

[12 Points]

(Q2) Consider the logic network below with inputs {a, b, c, d, e, f} and output {X}:

Assume that the delay of a gate is related to the number of its inputs i.e. the delay of a 2-input

AND gate is 2. Also, assume that the input data-ready times are zero for all inputs except

input a, which has a data-ready time of 2.

(i) Compute the data ready times, data required times and slacks for all vertices in the

network.

(ii) Determine the topological critical path.

(iii) Suggest an implementation of the function X to reduce the delay of the circuit to the

minimum possible and determine the maximum propagation delay in the optimized

circuit. Has the area been affected?

Page 4 of 13

Page 5 of 13

[10 Points]

(Q3) It is required to write a Verilog model to model a parametrizable egister file that has two

read ports and one write port. The number of address bits for addressing registers and the size

of each register should be used as parameters with default values of 5 address bits (i.e., 32

registers) and 32-bits. Register 0 should be always having a constant value of 0 and should

not be written to. Your register file should be declared as a two-dimensional array. The block

diagram of the regitser file with default parameters is given below:

module Register_File #(parameter word_size=32, addr_size=5)

(output [word_size-1:0] Data_Out_1, Data_Out_2,

input [word_size-1:0] Data_In,

input [addr_size-1:0] Read_Addr_1, Read_Addr_2, Write_Addr,

input Write_Enable, Clock);

reg [word_size-1:0] Reg_File[2**addr_size-1:0];

initial begin

 Reg_File[0]=0;

end

assign Data_Out_1 = Reg_File[Read_Addr_1];

assign Data_Out_2= Reg_File[Read_Addr_2];

always @(posedge Clock)

 if (Write_Enable==1'b1 && Write_Addr != 0)

 Reg_File[Write_Addr] <= Data_In;

endmodule

Page 6 of 13

[16 Points]

(Q4) Determine possible circuits that will be synthesized by each of the following modules.

Assume that Asynchronous Reset and Set come built-in with FFs. However, for Synchrnous

Reset and Set, you need to add the necessary logic.

(i) module Final_1 #(parameter n=3) (output reg Z, input [n-1:0] X);

 integer i;

 always @(X) begin

 Z=0;

 for (i=0; i<n; i=i+1)

 if (X[i])

 Z = ~Z;

 end

 endmodule

OR

Page 7 of 13

(ii) module Final_2 (output reg Y, input A, B, C, D);

 always @(A,B,C,D) begin

 if (A) Y = C;

 if (B) Y = D;

 end

endmodule

Page 8 of 13

(iii) module Final_3(output reg A, B, C, input D, E, F, CLK);

always @(posedge CLK)

 if (F) begin

 A<=1'b0; B<=1'b0; C<=1'b0;

 end

 else if (E) begin

 C <= D;

 B <= C;

 A <= B;

 end

endmodule

Page 9 of 13

(iv) module Final_4 #(parameter n=4) (output reg [n-1:0] R1, R2, R3, input CLK, RST,

R1in, R2in, R3in, R1out, R2out, R3out, Dout, input [n-1:0] Data);

 wire [n-1:0] Cbus;

 always @ (posedge CLK, posedge RST) begin

 if (RST) begin R1 <= 0; R2 <= 0; R3 <= 0; end

 else begin

 if (R1in) R1 <= Cbus;

 if (R2in) R2 <= Cbus;

 if (R3in) R3 <= Cbus;

 end

 end

 assign Cbus = R1out? R1:{n{1'bz}};

 assign Cbus = R2out? R2:{n{1'bz}};

 assign Cbus = R3out? R3:{n{1'bz}};

 assign Cbus = Dout? Data:{n{1'bz}};

endmodule

Page 10 of 13

(v) module Final_5 (output reg Dout1, Dout2, input A, B, C, D, SEL, CLK);

 always @ (posedge CLK) begin

 Dout1 = A & B; Dout2 = Dout1 ^ C;

 if (SEL) Dout1 = Dout2 | D;

 end

 endmodule

Page 11 of 13

[24 Points]

(Q5) You are required to design a programmable digital lock circuit. The lock has 5 inputs:

OpenL, CloseL, ProgL, Reset and 4-bit serial input. The lock is closed when either the Reset

input is pressed or when the CloseL input is pressed when the lock is open. The lock has also

two outputs Red and Green. If the lock is opened, Green is ON and if it is closed, Red is ON.

If the lock is jammed both Red and Green are ON. The circuit receives the input serially

representing four BCD digits received serially digit by digit starting from the least significant

digit (i.e., 4-bits every clock cycle). If the input combination matches a 4-BCD digit stored

password, the lock is opened, otherwise the lock remains closed. The user should be able to

re-program the lock to store a new password. Durting the attempt of opening the lock, if 3

wrong 4-BCD digit combinations are entered (i.e., 3 incorrect attempts of entering the

password), the lock jams and needs to be reset. Assume that the lock can be only reset by an

operator and that when the lock is reset it will assume a stored password of 0000.

The user cannot program the lock unless the lock is open. Once the lock is programmed, it

will close automatically. Assume that when the user presses OpenL or ProgL, the four digits

will be transmitted to the lock starting from the next cycle and that the input will be sent in 4

consecutive cycles. Every time the user attepmts to open the lock, he has to press the Open

input and then supply the four digits serially starting from the next clock cycle. Assume that

Reset is synchronous.

(i) Design the data path unit for the digital lock circuit.

(ii) Obtain the ASMD chart of the control unit that will control the operation of the

digital lock circuit.

(iii) Write a single behavioral Verilog module for modeling your datapath. Do not write

sepearte Verilog modules for individual compoenents and instantiate them.

RegB

ShiftB

RegA

Data

ShiftA

4

Reset

Equal

Compratot

16

16

Match

2-bit Up

CNT

&

EN

CLR

CNTE3

2-bit Up

CNT2

EN2

CNT2E2

CLR2

4

Reset

Page 12 of 13

Page 13 of 13

module Lock_DP

(output Match, CNTE3, CNT2E2, input [3:0] Data, input ShiftA,

ShiftB, EN, CLR, EN2, CLR2, Reset, CLK);

reg [15:0] RegA, RegB;

reg [1:0] CNT, CNT2;

// RegA

always @(posedge CLK) begin

 if (ShiftA)

 RegA <= {Data , RegA[15:4]};

end

// RegB

always @(posedge CLK) begin

if (Reset)

 RegB <= 16'b0;

else if (ShiftB)

 RegB <= {Data, RegB[15:4]};

end

// Match

assign Match = (RegA == RegB);

// 1st Counter

always @(posedge CLK) begin

 if (CLR)

 CNT <= 2'b0;

 else if (EN)

 CNT <= CNT + 1;

end

assign CNTE3 = CNT[1] & CNT[0];

// 2nd Counter

always @(posedge CLK) begin

 if (CLR2 || Reset)

 CNT2 <= 2'b0;

 else if (EN2)

 CNT2 <= CNT2 + 1;

end

assign CNT2E2 = CNT2[1];

endmodule

