PAGE
Page 11 of 16

May 20, 2013
COMPUTER ENGINEERING DEPARTMENT

COE 405

DESIGN & MODELING OF DIGITAL SYSTEMS

Final Exam

Second Semester (122)

Time: 7:00-10:00 PM

OPEN BOOK EXAM

Student Name : _KEY__

Student ID. : __

	Question
	Max Points
	Score

	Q1
	28
	

	Q2
	20
	

	Q3
	36
	

	Q4
	16
	

	Total
	100
	

Dr. Aiman El-Maleh
[28 Points]
 (Q1) Determine possible circuits that will be synthesize by each of the following modules:

(i) module FinalQ1_1 (output reg E, input A, B, C, D);

always @(posedge A)

if (B==C) E <= D;

else
E <= ~ D;

endmodule
[image: image1.png]o

(ii) module FinalQ1_2 (output reg E, input A, B, C, D);
always @(A, B, C, D)

case ({A,B})

2'b00: E = C & D;

2'b01: E = C | D;

2'b10: E = C ^ D;

endcase

endmodule
[image: image2.png]Py

o_{s0

=51 4x1mux

DLatch

D o—

AB

(iii) module FinalQ1_3 (output reg E, input A, B, C, D);
always @(A, B, C, D) begin

E = 0;

case ({A,B})

2'b00: E = C & D;

2'b01: E = C | D;

2'b10: E = C ^ D;

endcase

end
endmodule
[image: image3.png]Py

o{s0

>— 51 4x1mux

(iv) module FinalQ1_4 (output E, input A, B, C, D);

reg t;

always @(posedge A)

t <= B;

assign E = D?C:1'bz;

assign E = ~D?t:1'bz;

endmodule
[image: image4.png]DFF

t
E—p o
r—lc

(v) module FinalQ1_5 (output reg [3:0] Data_out, input DIN, clock, reset);

always @ (posedge clock, posedge reset) begin

 if (reset) Data_out = 0;

 else begin

Data_out[0]=DIN;

Data_out[1]=Data_out[0];

Data_out[2]=Data_out[1];

Data_out[3]=Data_out[2];

 end

end

endmodule
[image: image5.png]DIN—|

clock—|

DFF

b af

Cr

reset

-Data_outl0]
Data_out1]
Data_outi2]
Data_outi3)

(vi) module FinalQ1_6 (output reg Y, input D, S, R, X);

always @(posedge X, posedge S, posedge R)

 if (R) Y <= 0;

 else if (S) Y <=1;

 else Y <= D;

endmodule
[image: image6.png]

(vii) module FinalQ1_7 (output reg Y, input D, S, R, X);

always @(posedge X)
begin

 if (R) Y <= D;

 if (S) Y <=~D;

end

endmodule
[image: image7.png]SR

[20 Points]
 (Q2) The three n-bit registers R1, R2, and R3, are connected through a tri-state bus (Cbus) to allow the transfer of the content of any register to any other register as shown below:

[image: image8.png]D Q| D Q|] D Q]
R1 H R2 \T R3 H
‘* EN Rlout], EN R2out ’7 EN R3out
ax 11 ax 11 ax 11
RST Rlin RST R2in RST R3in
Data
I
‘ Cbus

Dout

(i) Write a Verilog model Datapath to model the given datapath showing the inetrface signals assuming R1, R2, R3 as output signals, CLK, Reset, R1in, R2in, R3in, R1out, R2out, R3out, Dout and Data as input signals. Assume that RST is Asynchronous reset that resets the machine when set to 1. Use parametr n for determining the width of registers with a default value of 8.

module Datapath #(parameter n=8)

(output reg [n-1:0] R1, R2, R3,

input CLK, RST, R1in, R2in, R3in, R1out, R2out, R3out, Dout,

input [n-1:0] Data);

wire [n-1:0] Cbus;

always @ (posedge CLK, posedge RST) begin

if (RST) begin

R1 <= 0; R2 <= 0; R3 <= 0;

end

else begin

if (R1in) R1 <= Cbus;

if (R2in) R2 <= Cbus;

if (R3in) R3 <= Cbus;

end

end

assign Cbus = R1out? R1:{n{1'bz}};

assign Cbus = R2out? R2:{n{1'bz}};

assign Cbus = R3out? R3:{n{1'bz}};

assign Cbus = Dout? Data:{n{1'bz}};

endmodule
(ii) Write a test bench to do the following assuming that the period of the clock is 100 ns and that the duty cycle is 50%:

· Initialize all the registers to 0 using the RST signal at time = 200 ns.

· Assign RST and all other control signals to 0 at time 300 ns.

· Assign Data=5 and Dout=1 at time 400 ns.

· Copy the value 5 from the bus into register R1 in the next cycle.

· Move the value of R1 into R2 in the following cycle.

· All registers keep their value in the subsequent clock cycles

module t_Datapath #(parameter n=8)();

wire [n-1:0] R1, R2, R3;

reg CLK, RST, R1in, R2in, R3in, R1out, R2out, R3out, Dout;

reg [n-1:0] Data;

Datapath M1(R1, R2, R3, CLK, RST, R1in, R2in, R3in, R1out, R2out, R3out, Dout, Data);

initial begin CLK = 0; forever #50 CLK = ~CLK; end

initial begin

#200 RST=1;

#100 RST=0; R1in=0; R2in=0; R3in=0; R1out=0; R2out=0; R3out=0; Dout=0;

#100 begin Data='d5; Dout=1; end

@ (posedge CLK) begin R1in=1; end

@ (posedge CLK) begin Dout=0; R1out=1; R1in=0; R2in=1; end

@ (posedge CLK) begin Dout=0; R1out=0; R1in=0; R2in=0; end

end

endmodule

[36 Points]
(Q3) It is required to design a module to perform unsigned division of an n-bit dividend number, A, by an n-bit divisor number, B. The divider produces an n-bit quotient and an n-bit remainder. Assume that the divider will be a sequential divider and it will set the signal Ready to 1 when the quotient and remainder results are ready. The divider has an Asynchronous Reset after which in the next clock cycle it starts the division process if the Start signal is 1. The quotient and remainder willl maintain their values unless the divider is reset again. The module of the divider is given below where A is the dividend, B is the divider, Q is the quotient and R is the reminder:

module UDIV # (parameter n= 4)

(output [n-1:0] Q, R, output Ready,

input [n-1:0] A, B,

input Start, Reset, CLK);

DPath_DIV #(n) DPU(Q, R, CEN, DGEZ, LDR, ClearR, LDQ, SetQ0, LDB, Shift, INC, CLRC, CLK, A, B);

CU_DIV CU (LDR, ClearR, LDQ, SetQ0, LDB, Shift, INC, CLRC, Ready, Start, CLK, Reset, DGEZ, CEN);

endmodule
Part of the Datapath of the divider is given below:

The algorithm for performing sequential division is as follows:

1. Set Quotient=Dividened, Set Remainder=0.

2. Shift(Remainder,Quotient) Left by 1 bit

3. Difference=Remainder-Divisor

4. If (Difference(0) Then

Remainder=Difference

Set Least Significant bit of Quotient to 1.

End If;

5. If (#iterations<N) Then Goto Step 2.

An example of applying the algorithm for a 4-bit divider with dividened=1110 and divisor=0011 is given below. Note that the Quotient=0100 and the Remainder=0010.

[image: image9.png]Iteration Remainder| Quotient Divisor |Difference
0 | Initialize 0000 1110 0011

1: SLL, Difference 0001 < 1100 0011 1110
! 2: Diff < 0 => Do Nothing

1: SLL, Difference 0011 +« 1000 0011 0000
2 2: Rem = Diff, setIsb Quotient] 0000 1001

1: SLL, Difference 0001 «- 0010 0011 1110
3 2: Diff < 0 => Do Nothing

1: SLL, Difference 0010 +« 0100 0011 1111
4 2: Diff < 0 => Do Nothing

The description of various signals is illustrated in the table below:
	Signal
	Role

	LDR
	Load the remainder register

	ClearR
	Clear the remainder register

	LDQ
	Load the quotient register

	SetQ0
	Set quotion register bit 0 to 1

	LDB
	Load the B register with the divisor

	Shift
	Shift the quotient and remainder register one bit to the left

	INC
	Increment counter

	CLRC
	Clear counter

	DGEZ
	Set when difference is ≥ 0

	CEN
	Set when counter is equal to n

(i) Complete the Verilog model given below for modeling the Datapath of the divider.

module DPath_DIV #(parameter n=4)

(output reg [n-1:0] Q, R, output CEN, DGEZ,

input LDR, ClearR, LDQ, SetQ0, LDB, Shift, INC, CLRC, CLK,

input [n-1:0] A, B);

reg [n-1:0] BR, CR;

wire [n-1:0] Diff;

always @ (posedge CLK)

begin

// Divisor Register

if (LDB) BR <= B;

// Quotient Register

if (LDQ) Q <= A;

else if (Shift) Q <= {Q[n-2:0],1'b0};

else if
(SetQ0) Q[0] <= 1'b1;

// Remainder Register

if (LDR) R <= Diff;

else if (Shift) R <= {R[n-2:0],Q[n-1]};

else if
(ClearR) R <= 0;

// Counter Register

if (CLRC) CR <= 0;

else if (INC) CR <= CR+1;

end

assign CEN = (CR==n);

assign
Diff = R - BR;

assign
DGEZ = ~ Diff[n-1];

endmodule
(ii) Write an ASMD chart for the control unit of the divider.

[image: image10.emf]S0

Start

LDQ, LDB,

CLRC. ClearR

S1/Shift

S2

DGEZ

LDR, SetQ0,

INC

INC

S3 CEN S4/Ready

1

0

1

0

1

0

Ready<=1

CR<=CR+1

R<=Diff

Q[0]<=1

CR<=CR+1

R<={R[n-2:0], Q[n-1]

Q<= {Q[n-2]:1],0}

Q<=A

BR<=B

CR<=0

R<=0

Reset

(iii) Complete the Verilog model given below for modeling the Control Unit of the divider.

module CU_DIV (output reg LDR, ClearR, LDQ, SetQ0, LDB, Shift, INC, CLRC, Ready, input Start, CLK, Reset, DGEZ, CEN);

// State Codes

parameter s0=0, s1=1, s2=2, s3=3, s4=4;

reg [2:0] PS, NS;

always @(posedge CLK, posedge Reset)

if (Reset==1) PS <= s0;

else PS <= NS;

always @ (PS, Start, DGEZ, CEN) begin

LDR=0; ClearR=0; LDQ=0; SetQ0=0; LDB=0;

Shift=0; INC=0; CLRC=0; Ready=0;

NS=s0;

case (PS)

s0: if (Start) begin

LDQ=1; LDB=1; CLRC=1; ClearR=1;

NS = s1;

 end

 else NS = s0;

s1: begin

Shift=1;

NS = s2;

 end

s2: begin

if (DGEZ) begin

LDR=1; SetQ0=1; INC=1;

end else INC=1;

NS = s3;

 end

s3: begin

if (CEN)

NS = s4;

else

NS = s1;

 end

s4: begin

Ready=1;

NS = s4;

 end

default: NS=s0;

endcase

end

endmodule

[16 Points]

(Q4) It is required to model an Asynchronous FIFO (First-In-First-Out) memory queue. The FIFO has a parametrizable memory depth of upto K loctions with a parametrizable data width of N bits. The FIFO interface is given below:

The Reset signal is an Asynchronous reset and when set to 1 it will consider the content of FIFO empty and set the EMPTY flag to one and all other flags to 0. A handshaking mechanism is used for both writing and reading from the FIFO using the signal WR_EN, WR_ACK, RD_EN and RD_ACK. When WR_EN=1, the data in DIN input will be written to the available location in the FIFO as long as the FULL signal is not set to 1. If the FIFO is FULL the request is ignored and not acknolwdged. It is assumed that the WR_EN signal will remain 1 until a WR_ACK is set to 1 by the FIFO. After that, the WR_EN signal will go to 0. A similar handshaking mechanism is used for reading from the FIFO. When RD_EN=1, the data in the proper location will be output to DOUT as long as the EMPTY signal is not set to 1. Then, the RD_ACK signal is set to 1. If the FIFO is EMPTY the request is ignored and not acknolwdged. It is very important to note that the FIFO should be able to read and write simultaneously if needed.

A read pointer is used to point at the location to be read from and a write pointer is used to point at the location to be written to. A counter is used to keep track of when the FIFO is full or empty.

Part of the FIFO mdoule is given below and you need to complete the following missing parts:

(i) Declare all the required variables for modeling the FIFO.

(ii) The Read and Counter processes are given to you. Describe the write process for writing to the FIFO.

module FIFO #(parameter N=8, K=4, KS=2)

(output reg [N-1:0] DOUT,

output reg WR_ACK, RD_ACK, FULL, EMPTY,

input [N-1:0] DIN,

input Reset, WR_EN, RD_EN);

// Define required variables here
reg [KS-1:0] ReadP, WriteP;

reg [KS:0] Count;

reg INC, DEC, INCA, DECA;

reg [N-1:0] FIFO[K-1:0];
// Read Process

 always @ (Reset, RD_EN, Count) begin

if (Reset) begin

 RD_ACK = 0;

 ReadP = 0;

 EMPTY = 1;

 DEC = 0;

end

else begin

if (RD_EN)

if (Count > 0) begin

DOUT = FIFO[ReadP];

if (ReadP < K-1)

ReadP = ReadP + 1;

else

ReadP = 0;

RD_ACK = 1;

DEC = 1;

@ (posedge DECA)
DEC = 0;

@ (negedge RD_EN)
RD_ACK = 0;

end

if (Count==0)

EMPTY = 1;

else

EMPTY = 0;

end

 end // Read Process

// Write Process

 always @ (Reset, WR_EN, Count) begin

 if (Reset) begin

 WR_ACK = 0;

 WriteP = 0;

 FULL = 0;

 INC = 0;

 end

 else
begin

if (WR_EN) begin

if (Count < K) begin

FIFO[WriteP] = DIN;

if (WriteP < K-1)

WriteP = WriteP + 1;

else

WriteP = 0;

WR_ACK = 1;

INC = 1;

@ (posedge INCA)
INC = 0;

@ (negedge WR_EN)WR_ACK = 0;

end

end

if (Count==K)

FULL = 1;

else

FULL = 0;

end

 end // Write Process
// Counter Process

always @ (Reset, INC, DEC) begin

if (Reset==1) begin

Count = 0;

INCA = 0;

DECA = 0;

end

else begin

if (INC) begin

Count = Count + 1;

INCA = 1;

@ (negedge INC) INCA = 0;

end

if (DEC) begin

Count = Count - 1;

DECA = 1;

@ (negedge DEC) DECA = 0;

end

end

end // Counter Process

endmodule

Reset

FIFO

K x N

EMPTY

RD_ACK

RD_EN

Dout[N-1:0]

FULL

WR_ACK

WR_EN

Din[N-1:0]

Difference

Shift Left

n-bit

n-bit

n-bit

Quotient

Remainder

Divisor

n-bit

SUB

_1430908301.vsd
S0

Start

LDQ, LDB, CLRC. ClearR

S1/Shift

S2

DGEZ

LDR, SetQ0,
 INC

INC

S3

CEN

S4/Ready

0

1

1

0

1

0

Ready<=1

CR<=CR+1

R<=Diff
Q[0]<=1
CR<=CR+1

R<={R[n-2:0], Q[n-1]
Q<= {Q[n-2]:1],0}

Q<=A
BR<=B
CR<=0
R<=0

Reset

