
June 1993 7-1

User-Defined Primitives (UDPs)

7
Figure 7-0

Example 7-0
Syntax 7-0
Table 7-0

User-Defined
Primitives (UDPs)

This chapter describes a modeling technique whereby the user can
effectively augment the set of predefined gate primitives by designing
and specifying new primitive elements called user-defined primitives
(UDPs). Instances of these new UDPs can then be used in exactly the
same manner as the gate primitives to represent the circuit being
modeled. This technique can reduce the amount of memory that a
description needs and can improve simulation performance. Evaluation
of these UDPs is accelerated by the Verilog-XL algorithm.

The following two types of behavior can be represented in a user-defined
primitive:

• combinational—modeled by a combinational UDP

• sequential—modeled by a sequential UDP

A sequential UDP uses the value of its inputs and the current value of
its output to determine the next value of its output. Sequential UDPs
provide an easy and efficient way to model sequential circuits such as
flip-flops and latches. A sequential UDP can model both level-sensitive
and edge-sensitive behavior.

The maximum number of inputs to a combinational UDP is ten. The
maximum number of inputs to a sequential UDP is limited to nine
because the internal state counts as an input. Each UDP has exactly one
output, which can be in one of three states: 0, 1, or x. The tri-state value
z is not supported. In sequential UDPs, the output always has the same
value as the internal state.

7-2 June 1993

User-Defined Primitives (UDPs)
Memory Usage and Performance Considerations

7.1
Memory Usage and Performance
Considerations

The user should be aware of the amount of memory required for the
internal tables created for evaluation of these UDPs during simulation.
Although only one such table is required per UDP definition, and not for
each instance, the UDPs with 8, 9, and 10 inputs do consume a large
amount of memory. The trade-off here is one of speed versus memory. If
many instances of a large UDP are needed, then it is easily possible to
gain back the memory used by the definition, because each UDP
instance can take less memory than that required for the group of gates
it replaces.

The memory required for a UDP definition is given below:

Table 7-1: UDP memory requirements

Note that the number of variables is the number of inputs for
combinational UDPs and the number of inputs plus one for sequential
UDPs.

Number of variables Memory required (K bytes)

<1
5
17
56
187
623

1-5
6
7
8
9
10

June 1993 7-3

User-Defined Primitives (UDPs)
Syntax

7.2
Syntax

The formal syntax of the UDP definition is as follows:

Syntax 7-1: Syntax for user-defined primitives

<UDP>
::= primitive <name_of_UDP> (<output_terminal_name>,

<input_terminal_name> <,<input_terminal_name>>*) ;
<UDP_declaration>+
<UDP_initial_statement>?
<table_definition>
endprimitive

<name_of_UDP>
::= <IDENTIFIER>

<UDP_declaration>
::= <UDP_output_declaration>
||= <reg_declaration>
||= <UDP_input_declaration>

<UDP_output_declaration>
::= output <output_terminal _name>;

<reg_declaration>
reg <output_terminal_name> ;

<UDP_input_declaration>
::= input <input_terminal _name>

<,<input_terminal_name>>*) ;
<UDP_initial_statement>

::= initial <output_terminal_name> = <init_val> ;
<init_val>

::= 1’b0
||= 1’b1
||= 1’bx
||= 1
||= 0

<table_definition>
::= table

<table_entries>
endtable

<table_entries>
::= <combinational_entry>+
||= <sequential_entry>+

—continued

7-4 June 1993

User-Defined Primitives (UDPs)
UDP Definition

Syntax 7-1 continued: Syntax for user-defined primitives

7.3
UDP Definition

UDP definitions are independent of modules; they are at the same level
as module definitions in the syntax hierarchy. They can appear
anywhere in the source text, either before or after they are used inside a
module. They may not appear between the keywords module and
endmodule.

A UDP definition begins with the keyword primitive. This is followed
by an identifier, which is the name of the UDP. This in turn is followed
by a comma separated list of terminals enclosed in parentheses, which
is followed by a semicolon.

<combinational_entry>
::= <level_input_list> : <OUTPUT_SYMBOL> ;

<sequential_entry>
::= <input_list> : <state> : <next_state> ;

<input_list>
::= <level_input_list>
||= <edge_input_list>

<level_input_list>
::= <LEVEL_SYMBOL>+

<edge_input_list>
::= <LEVEL_SYMBOL>* <edge> <LEVEL_SYMBOL>*

<edge>
::= (<LEVEL_SYMBOL> <LEVEL_SYMBOL>)
||= <EDGE_SYMBOL>

<state>
::= <LEVEL_SYMBOL>

<next_state>
::= <OUTPUT_SYMBOL>
||= - (This is a literal hyphen—

see Section 7.15 for more details.)
Lexical tokens:

<OUTPUT_SYMBOL> is one of the following:
0 1 x X

<LEVEL_SYMBOL> is one of the following:
0 1 x X ? b B

<EDGE_SYMBOL> is one of the following:
r R f F p P n N *

June 1993 7-5

User-Defined Primitives (UDPs)
UDP Definition

The UDP definition header described previously is followed by terminal
declarations and a state table. The UDP definition is terminated by the
keyword endprimitive.

7.3.1
UDP Terminals

UDPs have multiple input terminals and exactly one output terminal;
they cannot have bidirectional inout terminals.

The output terminal MUST be the first terminal in the terminal list.

All UDP terminals are scalar. No vector terminals are allowed.

The output terminal of a sequential UDP requires an additional
declaration as type reg. It is illegal to declare a reg for the output
terminal of a combinational UDP.

7.3.2
UDP Declarations

UDPs must contain input and output terminal declarations. The output
terminal declaration begins with the keyword output, followed by one
output terminal name. The input terminal declaration begins with the
keyword input, followed by one or more input terminal names.

Sequential UDPs must contain a reg declaration for the output terminal.
Combinational UDPs cannot contain a reg declaration. The initial value
of the output terminal reg can be specified in an initial statement in
a sequential UDP.

7.3.3
Sequential UDP initial Statement

The sequential UDP initial statement specifies the value of the output
terminal when simulation begins. This statement begins with the
keyword initial. The statement that follows must be an assignment
statement that assigns a single bit literal value to the output terminal
reg.

7.3.4
UDP State Table

The state table which defines the behavior of a UDP begins with the
keyword table and is terminated with the keyword endtable.

Each row of the table is created using a variety of characters that
indicate input and output states. Three states—0, 1, and x—are
supported. The z state is explicitly excluded from consideration in

7-6 June 1993

User-Defined Primitives (UDPs)
Combinational UDPs

user-defined primitives. A number of special characters are defined to
represent certain combinations of state possibilities. These are detailed
in this chapter, in Section 7.10, Symbols to Enhance Readability.

The order of the input state fields of each row of the state table is taken
directly from the terminal list in the UDP definition header. It is NOT
related to the order of the input declarations.

Combinational UDPs have one field per input and one field for the
output. The input fields are separated from the output field by a colon.

Sequential UDPs have an additional field inserted between the input
fields and the output field. This additional field represents the current
state of the UDP and is considered equivalent to the current output
value. It is delimited by colons.

Each row defines the output for a particular combination of input states.
If all inputs are specified as x, then the output must be specified as x.
All combinations that are not explicitly specified result in a default
output state of x. Each row of the table is terminated by a semicolon.

Consider the following entry from a UDP state table:

0 1 : ? : 1 ;

In this entry the ? represents a don’t-care condition—it is replaced by
cases of the entry when the ? is replaced by 1, 0, and x. This specifies
that when the inputs are 0 and 1, no matter what the value of the
current state, the output is 1.

It is not necessary to explicitly specify every possible input combination.
All combinations that are not explicitly specified result in a default
output state of x.

It is illegal to have the same combination of inputs, including edges,
specified for different outputs.

7.4
Combinational UDPs

In combinational UDPs, the output state is determined solely as a
function of the current input states. Whenever an input changes state,
the UDP is evaluated and one of the state table rows is matched. The
output state is set to the value indicated by that row.

Consider the following example, which defines a multiplexer with two
data inputs, a control input. Remember, there can only be a single
output.

June 1993 7-7

User-Defined Primitives (UDPs)
Combinational UDPs

Example 7-1: Combinational form of user-defined primitive

The first entry in the table above can be explained as follows: when
control equals 0 and dataA equals 1 and dataB equals 0, then output
mux equals 1.

All combinations of the inputs that are not explicitly specified will drive
the output to the unknown value x. For example, in the table for
multiplexer above (Example 7-1), the input combination
0xx(control=0, dataA=x, dataB=x) is not specified. If this
combination occurs during simulation, the value of output mux will
become x.

To improve the readability, and to ease writing of the table, several
special symbols are provided. A ? represents iteration of the table entry
over the values 0, 1, and x — a ? generates cases of that entry where the
? is replaced by a 0, 1, or x. It represents a don’t-care condition on that
input. Using ?, the description of a multiplexer given in Example 7-1 can
be abbreviated as implemented in Example 7-2.

primitive multiplexer(mux, control, dataA, dataB) ;
output mux ;
input control, dataA, dataB ;

table
// control dataA dataB mux

0 1 0 : 1 ;
0 1 1 : 1 ;
0 1 x : 1 ;
0 0 0 : 0 ;
0 0 1 : 0 ;
0 0 x : 0 ;

1 0 1 : 1 ;
1 1 1 : 1 ;
1 x 1 : 1 ;
1 0 0 : 0 ;
1 1 0 : 0 ;
1 x 0 : 0 ;

x 0 0 : 0 ;
x 1 1 : 1 ;

endtable

endprimitive

7-8 June 1993

User-Defined Primitives (UDPs)
Level-Sensitive Sequential UDPs

Example 7-2: Special symbols in user-defined primitive

7.5
Level-Sensitive Sequential UDPs

Level-sensitive sequential behavior is represented the same way as
combinational behavior, except that the output is declared to be of type
reg, and there is an additional field in each table entry. This new field
represents the current state of the UDP.

The output field in a sequential UDP represents the next state.

Consider the example of a latch in Example 7-3.

Example 7-3: UDP for a latch

primitive multiplexer(mux,control,dataA,dataB) ;
output mux ;
input control, dataA, dataB ;

table

// control dataA dataB mux

0 1 ? : 1 ; // ? = 0,1,x
0 0 ? : 0 ;
1 ? 1 : 1 ;
1 ? 0 : 0 ;

x 0 0 : 0 ;
x 1 1 : 1 ;

endtable

endprimitive

primitive latch(q, clock, data) ;
output q; reg q ;
input clock, data;

table
// clock data q q+

0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

endtable
endprimitive

June 1993 7-9

User-Defined Primitives (UDPs)
Edge-Sensitive UDPs

This description differs from a combinational UDP model in two ways.
First, the output identifier q has an additional reg declaration to
indicate that there is an internal state q. The output value of the UDP is
always the same as the internal state. Second, a field for the current
state, which is separated by colons from the inputs and the output, has
been added.

7.6
Edge-Sensitive UDPs

In level-sensitive behavior, the values of the inputs and the current state
are sufficient to determine the output value. Edge sensitive behavior
differs in that changes in the output are triggered by specific transitions
of the inputs. This makes the state table a transition table as illustrated
in Example 7-4.

Example 7-4: UDP for an edge-sensitive D-type flip-flop

Example 7-4 has terms like (01) in the input fields. These terms
represent transitions of the input values. Specifically, (01) represents a
transition from 0 to 1. The first line in the table of the previous UDP

primitive d_edge_ff(q, clock, data);
output q; reg q;
input clock, data;

table
// obtain output on rising edge of clock
// clock data q q+

(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;

// ignore negative edge of clock
(?0) ? : ? : - ;

// ignore data changes on steady clock
? (??) : ? : - ;
endtable

endprimitive

7-10 June 1993

User-Defined Primitives (UDPs)
Sequential UDP Initialization

definition (Example 7-4) can be interpreted as follows: when clock
changes value from 0 to 1 and data equals 0, the output goes to 0 no
matter what the current state.

Please note: Each table entry can have a transition specification on,
at most, one input. Entries such as the one shown below are illegal:

(01)(01)0 : 0 : 1

As in the combinational and the level-sensitive entries, a ? implies
iteration of the entry over the values 0, 1, and x. A dash (-) in the output
column indicates no value change.

All unspecified transitions default to the output value x. Thus, in the
previous example, transition of clock from 0 to x with data equal to 0 and
current state equal to 1 will result in the output q going to x.

All transitions that should not affect the output must be explicitly
specified. Otherwise, they will cause the value of the output to change to
x. If the UDP is sensitive to edges of any input, the desired output state
must be specified for all edges of all inputs.

7.7
Sequential UDP Initialization

The value on the output terminal of a sequential UDP can be specified
with an initial statement that contains a procedural assignment
statement. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs
begin with the keyword initial. The valid contents of initial
statements in UDPs and the valid left and right-hand sides of their
procedural assignment statements differ from initial statements in
modules. The difference between these two types of initial statements
is described in Table 7-2.

June 1993 7-11

User-Defined Primitives (UDPs)
Sequential UDP Initialization

Table 7-2: Initial statements in UDPs and modules

Example 7-5 shows a sequential UDP that contains an initial
statement.

Example 7-5: Sequential UDP initial statement

initial statements in UDPs initial statements in modules

contents limited to one procedural
assignment statement

the procedural assignment statement
must assign a value to a reg whose
identifier matches the identifier of an
output terminal

the procedural assignment statement
must assign one of the following values:

1’b1 1’b0 1’bx 1 0

contents can be one procedural
statement of any type or a block
statement that contains more than one
procedural statement

procedural assignment statements in
initial statements can assign values to a
reg whose identifier does not match the
identifier of an output terminal

procedural assignment statements can
assign values of any size, radix, and
value

primitive srff (q,s,r);

output q;

input s,r;

reg q;

initial q = 1’b1;

table

// s r q q+

1 0 : ? : 1 ;

f 0 : 1 : - ;

0 r : ? : 0 ;

0 f : 0 : - ;

1 1 : ? : 0 ;

endtable

endprimitive

sequential UDP initial statement
specifies that output terminal q has a
value of1 at the start of the simulation

7-12 June 1993

User-Defined Primitives (UDPs)
Sequential UDP Initialization

In Example 7-5, the output q has an initial value of 1 at the start of the
simulation; a delay specification in the UDP instance does not delay the
simulation time of the assignment of this initial value to the output.
When simulation starts, this value is the current state in the state table.

Please note: Verilog-XL does not have an initialization or power-up
phase. The initial value on the output to a sequential UDP does not
propagate to the design output before simulation starts. All nets in the
fanout of the output of a sequential UDP begin with a value of x even
when that output has an initial value of 1 or 0.

The following example and figure show how values are applied in a
module that instantiates a sequential UDP with an initial statement.
Example 7-6 shows the source description for the module and UDP.

Example 7-6: Instance of a sequential UDP with an initial statement

primitive dff1 (q,clk,d);

input clk,d;

output q;

reg q;

initial

q = 1’b1;

table

// clkd q q+

p 0 : ? : 0 ;

p 1 : ? : 1 ;

n ? : ? : - ;

? * : ? : - ;

endtable

endprimitive

module dff (q,qb,clk,d);

input clk,d;

output q,qb;

dff1 g1 (qi,clk,d);

buf #3 g2 (q,qi);

not #5 g3 (qb,qi);

endmodule

UDP instance output is qi

initial statement

q and qb are in the fanout of qi

June 1993 7-13

User-Defined Primitives (UDPs)
Sequential UDP Initialization

In Example 7-6, UDP dff1 contains an initial statement that sets the
initial value of its output to 1. Module dff contains an instance of UDP
dff1. In this instance, the UDP output is qi; the output’s fanout
includes nets q and qb.

Figure 7-1 shows the schematic of the module in Example 7-6 and the
simulation times of the propagation of the initial value of the output of
the UDP.

Figure 7-1: Module schematic and the simulation times of initial value propagation

In Figure 7-1, the fanout from the UDP output qi includes nets q and
qb. At simulation time 0, qi changes value to 1. That initial value of qi
does not propagate to net q until simulation time 3, and does not
propagate to net qb until simulation time 5.

qi
UDP dff1 g1

buf g2

not g3

d

clk

q

qb

module dff

#3

#5

0

1

0

1

0

1

0 3 5

qi

q

qb

simulation time

7-14 June 1993

User-Defined Primitives (UDPs)
UDP Instances

7.8
UDP Instances

Instances of user-defined primitives are specified inside modules in the
same manner as for gates. The instance name is optional, just as for
gates. The terminal order is as specified in the UDP definition. Only two
delays can be specified, because z is not supported for UDPs.

The system can generate names for unnamed instances of UDPs. See
Section 12.6 for more information on automatic naming.

Example 7-7 creates an instance of the D-type flip-flop d_edge_ff
(defined in Example 7-4).

Example 7-7: UPD for a D-type flip-flop

7.9
Compilation

Several checks are applied to user-defined primitive definitions as they
are compiled.

The table entries are checked for consistency. This means that if two
entries specify different outputs for the same combination of inputs,
including edges, an error will result. Special care should be taken when
using the ?, b, *, p, and n symbols which are described in the next
section.

The table entries are checked for redundancy. If two or more table
entries specify the same output for the same combination of inputs,
including edges, a warning will result. The message indicates the entry
that duplicates what is specified in previous lines.

module flip;
reg clock , data ;
parameter p1 = 10 ;
parameter p2 = 33;
d_edge_ff #(5,7) d_inst(q, clock, data);

initial
begin

data = 1;
clock = 1;

end
always #p1 clock = ~clock;
always #p2 data = ~data;
endmodule

June 1993 7-15

User-Defined Primitives (UDPs)
Symbols to Enhance Readability

7.10
Symbols to Enhance Readability

Like ?, there are several symbols that can be used in UDP definitions to
make the description more readable. The symbols described in Table 7-3
are used in Example 7-8.

Table 7-3: Symbols for readability

Symbol Interpretation Explanation

b 0 or 1 like ?, except x is excluded

r (01) rising edge on an input

f (10) falling edge on an input

p (01) or rising edges, including
(0x) or (x1) or unknown

(1z) or (z1)

n (10) or falling edges, including
(1x) or (x0) or unknown

(0z) or (z0)

* (??) all transitions

7-16 June 1993

User-Defined Primitives (UDPs)
Mixing Level-Sensitive and Edge-Sensitive Descriptions

7.11
Mixing Level-Sensitive and Edge-Sensitive
Descriptions

UDP definitions allow a mixing of the level-sensitive and the
edge-sensitive constructs in the same description. An edge-triggered JK
flip-flop with asynchronous preset and clear needs such a mixture.
Example 7-8 illustrates this concept.

Example 7-8: Sequential UDP for level-sensitive and edge-sensitive behavior

In this example, the preset and clear logic is level-sensitive. Whenever
the preset and clear combination is 01, the output has value 1. Similarly,
whenever the preset and clear combination has value 10, the output has
value 0.

The remaining logic is sensitive to edges of the clock. In the normal
clocking cases, the flip-flop is sensitive to the rising clock edge as
indicated by an r in the clock field in those entries. The insensitivity to
the falling edge of clock is indicated by a hyphen (-) in the output field
(see Section 7.15) for the entry with an f as the value of clock. Remember
that the desired output for this input transition must be specified to

primitive jk_edge_ff(q, clock, j, k, preset, clear);
output q; reg q;
input clock, j, k, preset, clear;

table
//clock jk pc state output/next state

? ?? 01 : ? : 1 ; //preset logic
? ?? *1 : 1 : 1 ;
? ?? 10 : ? : 0 ; //clear logic
? ?? 1* : 0 : 0 ;

r 00 00 : 0 : 1 ; //normal clocking cases
r 00 11 : ? : - ;
r 01 11 : ? : 0 ;
r 10 11 : ? : 1 ;
r 11 11 : 0 : 1 ;
r 11 11 : 1 : 0 ;
f ?? ?? : ? : - ;

b *? ?? : ? : - ; //j and k transition cases
b ?* ?? : ? : - ;

endtable

endprimitive

June 1993 7-17

User-Defined Primitives (UDPs)
Reducing Pessimism

avoid unwanted x values at the output. The last two entries show that
the transitions in j and k inputs do not change the output on a steady
low or high clock.

7.12
Reducing Pessimism

Three-valued logic tends to make pessimistic estimates of the output
when one or more inputs are unknown. User-defined primitives can be
used to reduce this pessimism. The following is an extension of the
previous latch example illustrating reduction of pessimism.

Example 7-9: Latch UDP illustrating pessimism

The last two entries specify what happens when the clock input has
value x. If these are omitted, the output will go to x whenever the clock
is x. This is a pessimistic model, as the latch should not change its
output if it is already 0 and the data input is 0. Similar analysis is true
for the situation when the data input is 1 and the current output is 1.

primitive latch(q, clock, data)
output q; reg q ;
input clock, data ;

table

// clock data state output/next state
0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

// ignore x on clock when data equals state
x 0 : 0 : - ;
x 1 : 1 : - ;

endtable

endprimitive

7-18 June 1993

User-Defined Primitives (UDPs)
Reducing Pessimism

Consider the jk flip-flop with preset and clear in Example 7-10.

Example 7-10: UDP for a JK flip-flop with preset and clear

This example has additional entries for the positive clock (p) edges, the
negative clock edges (?0 and 1x), and with the clock value x. In all of
these situations, the output is deduced to remain unchanged rather
than going to x. Thus, this model is less pessimistic than the previous
example.

primitive jk_edge_ff(q, clock, j, k, preset, clear);
output q; reg q;
input clock, j, k, preset, clear;

table
//clock jk pc state output/next state

//preset logic
? ?? 01 : ? : 1 ;
? ?? *1 : 1 : 1 ;

//clear logic
? ?? 10 : ? : 0 ;
? ?? 1* : 0 : 0 ;

//normal clocking cases
r 00 00 : 0 : 1 ;
r 00 11 : ? : - ;
r 01 11 : ? : 0 ;
r 10 11 : ? : 1 ;
r 11 11 : 0 : 1 ;
r 11 11 : 1 : 0 ;
f ?? ?? : ? : - ;

//j and k cases
b *? ?? : ? : - ;
b ?* ?? : ? : - ;

//cases reducing pessimism
p 00 11 : ? : - ;
p 0? 1? : 0 : - ;
p ?0 ?1 : 1 : - ;
(?0)?? ?? : ? : - ;
(1x)00 11 : ? : - ;
(1x)0? 1? : 0 : - ;
(1x)?0 ?1 : 1 : - ;
x *0 ?1 : 1 : - ;
x 0* 1? : 0 : - ;

endtable

endprimitive

June 1993 7-19

User-Defined Primitives (UDPs)
Level-Sensitive Dominance

7.13
Level-Sensitive Dominance

In the Verilog HDL, edge-sensitive cases are processed first, followed by
level-sensitive cases. When level-sensitive and edge-sensitive cases
specify different output values, the result is specified by the
level-sensitive case. The following table shows level-sensitive and
edge-sensitive entries in Example 7-10, their level-sensitive or
edge-sensitve behavior, and a case that each includes.

Table 7-4: The level-sensitive and edge-sensitive entries in Example 7-10

The included cases specify opposite next state values for the same input
and current state combination.

The level-sensitive included case specifies that when the inputs clock,
jk and pc values are 0 00 01, and the current state is 0, the output
changes to 1.

The edge-sensitive included case specifies that when clock falls from 1
to 0, and the other inputs jk and pc are 00 01, and the current state
is 0, the output changes to 0.

When the edge-sensitive case is processed first, followed by the
level-sensitive case, the output changes to 1.

7.14
Processing of Simultaneous Input Changes

When multiple UDP inputs change at the same simulation time the UDP
will be evaluated multiple times, once per input value change. This
situation cannot be detected by any form of table entry. This fact has
important implications for modeling sequential circuits where the order
of input changes and subsequent UDP evaluations can have a profound
effect on the results of the simulation.

? ?? 01: ?: 1;

f 00 01: 0: 0;f ?? ??: ?: -;

0 00 01: 0: 1; level-sensitive

edge-sensitive

entry included case behavior

7-20 June 1993

User-Defined Primitives (UDPs)
Processing of Simultaneous Input Changes

Consider the D-type flip-flop in Example 7-11.

Example 7-11: D-type flip-flop

If the current state of the flip-flop is 0 and the clock and data inputs
make transitions from 0 to 1 at the same simulation time, then the state
of the output at the next simulation time is unpredictable because it
cannot be predicted which of these transitions is processed first.

If the clock input transition is processed first and the data input
transition is processed second, then the next state of the output will be
0. Likewise, if the data input transition is processed first and the clock
transition is processed second, then the next state of the output will be
1.

This fact should be taken into consideration when constructing models.
Keep in mind that gate-level models have the same sort of unpredictable
behavior given particular input transition sequences; event-driven
simulation is subject to idiosyncratic dependence on the order in which
events are processed.

Timing checks can be used to detect simultaneous input transitions,
provide a warning, and affect the simulation results; see Chapter13,
Specify Blocks.

primitive d_edge_ff(q, clock, data);
output q; reg q;
input clock, data;

table
// obtain output on rising edge of clock
// clock data q q+

(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;

// ignore negative edge of clock
(?0) ? : ? : - ;

// ignore data changes on steady clock
? (??) : ? : - ;
endtable

endprimitive

June 1993 7-21

User-Defined Primitives (UDPs)
Summary of Symbols

7.15
Summary of Symbols

The following table summarizes the meaning of all the value symbols
that are valid in the table part of a UDP definition.

Table 7-5: UDP table symbols

Symbol Interpretation Notes

0 logic 0
1 logic 1
x unknown
? iteration of cannot be given in output field

0, 1, and x
b iteration of cannot be given in output field

0 and 1
- no change can only be given in the output

field of a sequential UDP
(vw) value change v and w can be any one of 0,

from v to w 1, x, ? or b
* same as (??) any value change on input
r same as (01) rising edge on input
f same as (10) falling edge on input
p iteration of potential positive edge on the

(01), (0x), input
and (x1)

n iteration of potential Negative edge on the
(10), (1x), and (x0) input

7-22 June 1993

User-Defined Primitives (UDPs)
Examples

7.16
Examples

The following examples show UDP modeling for an and-or gate, a
majority function for carry, and a 2-channel multiplexor with storage.

Example 7-12: UDP for an and-or gate

// Description of an AND-OR gate.
// out = (a1 & a2 & a3) | (b1 & b2).
primitive and_or(out, a1,a2,a3, b1,b2);

output out;
input a1,a2,a3, b1,b2;
table
// a b : out ;

111 ?? : 1 ;
??? 11 : 1 ;
0?? 0? : 0 ;
0?? ?0 : 0 ;
?0? 0? : 0 ;
?0? ?0 : 0 ;
??0 0? : 0 ;
??0 ?0 : 0 ;

endtable
endprimitive

June 1993 7-23

User-Defined Primitives (UDPs)
Examples

Example 7-13: UDP for a majority function for carry

// Majority function for carry
// carryout = (a & b) | (a & carryin) | (b & carryin)
primitive carry(carryout, carryin, a, b);

output carryout;
input carryin, a, b;
table

0 00 : 0;
0 01 : 0;
0 10 : 0;
0 11 : 1;
1 00 : 0;
1 01 : 1;
1 10 : 1;
1 11 : 1;
// the following cases reduce pessimism
0 0x : 0;
0 x0 : 0;
x 00 : 0;
1 1x : 1;
1 x1 : 1;
x 11 : 1;

endtable
endprimitive

7-24 June 1993

User-Defined Primitives (UDPs)
Examples

Example 7-14: UDP for a 2-channel multiplexor with storage

// Description of a 2-channel multiplexer with storage.
// The storage is level sensitive.

primitive mux_with_storage(out,clk,control,dataA,dataB);
output out;
reg out;
input clk, control, dataA, dataB;

table
//clk control dataA dataB : current-state : next state ;

1 0 1 ? : ? : 1 ;
1 0 0 ? : ? : 0 ;
1 1 ? 1 : ? : 1 ;
1 1 ? 0 : ? : 0 ;
1 x 0 0 : ? : 0 ;
1 x 1 1 : ? : 1 ;
0 ? ? ? : ? : - ;
x 0 1 ? : 1 : - ;
x 0 0 ? : 0 : - ;
x 1 ? 1 : 1 : - ;
x 1 ? 0 : 0 : - ;

endtable

endprimitive

