<image/> <section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>		 Mei The good new Small & fas Every year New kid or Non-va The bad news Latencies (Separate tsilicon, so pbandwidths New h Likely the systems: dmemories residences (s: huge selection of technologies ster vs. large & slower capacities go up and prices go down the block: high density, fast flash memories blatile, read/write, no moving parts! (robust, efficient) :: perennial system bottleneck (access time) haven't kept pace with cycle times technology from logic, so must communicate between obysical limitations (# of pins, R's and C's and L's) limit opes: capacitive interconnect, 3D IC's limiting factor in cost & performance of many digital esigners spend a lot of time figuring out how to keep running at peak bandwidth memory, stupid"	
Lecture 10	1	6.111 Fall 2012	Lecture 10	

Memories in Verilog

```
• reg bit; // a single register
• reg [31:0] word; // a 32-bit register
• reg [31:0] array[15:0]; // 16 32-bit regs
• reg [31:0] array_2d[31:0][15:0];
    // 2 dimensional 32-bit array
• wire [31:0] read_data,write_data;
wire [3:0] index;
// combinational (asynch) read
assign read_data = array[index];
// clocked (synchronous) write
always @(posedge clock)
    array[index] <= write_data;</pre>
```

Multi-port Memories (aka regfiles)

reg [31:0] regfile[30:0]; // 31 32-bit words

```
// Beta register file: 2 read ports, 1 write
wire [4:0] ra1,ra2,wa;
wire [31:0] rd1,rd2,wd;
```

assign ra1 = inst[20:16]; assign ra2 = ra2sel ? inst[25:21] : inst[15:11]; assign wa = wasel ? 5'd30 : inst[25:21];

```
// read ports
assign rd1 = (ra1 == 5'd31) ? 32'd0 : regfile[ra1];
assign rd2 = (ra2 == 5'd31) ? 32'd0 : regfile[ra2];
// write port
always @(posedge clk)
    if (werf) regfile[wa] <= wd;</pre>
```

assign z = ~| rd1; // used in BEQ/BNE instructions

FPGA memory implementation

• Regular registers in logic blocks

- Piggy use of resources, but convenient & fast if small

- [Xilinx Vertex II] use the LUTs:
 - Single port: 16x(1,2,4,8), 32x(1,2,4,8), 64x(1,2), 128x1
 - Dual port (1 R/W, 1R): 16x1, 32x1, 64x1
 - Can fake extra read ports by cloning memory: all clones are written with the same addr/data, but each clone can have a different read address
- [Xilinx Vertex II] use block ram:
 - 18K bits: 16Kx1, 8Kx2, 4Kx4 with parity: 2Kx(8+1), 1Kx(16+2), 512x(32+4)
 - Single or dual port
 - Pipelined (clocked) operations
 - Labkit XCV2V6000: 144 BRAMs, 2952K bits total

Slice Distributed RAM Timing Diagram

			Speed Grade	5	
Description	Symbol	-6	-5	-4	Units
Sequential Delays					
Clock CLK to X/Y outputs (WE active) in 16 x 1 mode	T _{SHCK016}	1.63	1.79	2.05	ns, Max
Clock CLK to X/Y outputs (WE active) in 32 x 1 mode	TSPICKOSZ	1.97	2.17	2.49	ns, Max
Clock CLK to F5 output	T _{SPICKOP5}	1.77	1.94	2.29	ns, Max
Setup and Hold Times Before/After Clock CLK					
BX/BY data inputs (DIN)	T _{D0} /T _{DH}	0.53/-0.09	0.58/0.10	0.67/0.11	ns, Min
F/G address inputs	TAS/TAH	0.40/ 0.00	0.44/ 0.00	0.50/0.00	ns, Min
SR input (WS)	Twee/Twee	0.42/-0.01	0.46/0.01	0.53/-0.01	ns, Min
Clock CLK					
Minimum Pulse Width, High	TWPH	0.57	0.63	0.72	ns, Min
Minimum Pulse Width, Low	TWPL	0.57	0.63	0.72	ns, Min
Minimum clock period to meet address write cycle time	Two	1.14	1.25	1.44	na, Min
Combinatorial Delays					
4-input function: F/G inputs to X/Y outputs	TRO	0.95	0.39	0.44	ns, Max

LUT-based RAM Modules

RAMyX1S	RAMyX1S Single-Port and Dual-Port Distributed SelectRAM							
D	Primit	ive	RAM Size		Туре	Addr	ess Inputs	
WE O	RAM16X1S		16 bits	sin	gle-port	A3, A2, A1,	A0	
wclk —>	RAM32X1S		32 bits	sin	gle-port	A4, A3, A2,	A1, A0	
	RAM64X1S		64 bits	sin	gle-port	A5, A4, A3,	A2, A1, A0	
A[#:0]	RAM128X1	5	128 bits	sin	gle-port	A6, A5, A4,	A3, A2, A1, A0	
RAMyX1D	RAM16X1E)	16 bits	du	al-port	A3, A2, A1,	A0	
p	RAM32X1D)	32 bits	du	al-port	A4, A3, A2,	A1, A0	
WE	RAM64X1D		64 bits	dual-port		A5, A4, A3, A2, A1, A0		
WCLK	Wider Library	Primitives	Data Inn	uta	6 dduo	oo luuuto	Data Outputa	
A[#:0] —	Primitive	RAM Size	Data inp	uts	Addre	ss inputs	Data Outputs	
5 d	RAM16x2S	16 x 2-bit	D1, D0		A3, A2, A	1, A0	01,00	
- DPO	RAM32X2S	32 x 2-bit	D1, D0		A4, A3, A	2, A1, A0	O1, O0	
DPRA[#:0]	RAM64X2S	64 x 2-bit	D1, D0		A5, A4, A	3, A2, A1, A0	O1, O0	
The state of the s	RAM16X4S	16 x 4-bit	D3, D2, D1, D0		D A3, A2, A1, A0		O3, O2, O1, O0	
Classic Dark and Duck Dark	RAM32X4S	32 x 4-bit	D3, D2, D1	, D0	A4,A3, A2	, A1, A0	O3, O2, O1, O0	
Distributed SelectRAM Primitive	RAM16X8S	16 x 8-bit	D <7:0>		A3, A2, A	1, A0	O <7:0>	
	RAM32X8S	32 x 8-bit	D<7:0>		A4,A3, A2	, A1, A0	O <7:0>	

// instantiate a LUT-based RAM module

RAM16X1S mymem #(.INIT(16'b0110_1111_0011_0101_1100)) // msb first (.D(din),.O(dout),.WE(we),.WCLK(clock_27mhz), .A0(a[0]),.A1(a[1]),.A2(a[2]),.A3(a[3]));

6.111 Fall 2012	Lecture 10	9	6.111 Fall 2012	Lecture 10	10

11

6,111 Fall 2012

Block Memories (BRAMs) Dual-Port Block BAM Primitin

I

Lecture 10

Primitive	Port A Width	Port B Width
AMB16_S1_S1		1
RAMB16_S1_S2	7	2
RAMB16_S1_S4		4
RAMB16_S1_S9	1	(8+1)
RAMB16_S1_S18	7	(16+2)
RAMB16_S1_S36		(32+4)
RAMB16_S2_S2		2
RAMB16_S2_S4	1	4
RAMB16_S2_S9	2	(8+1)
RAMB16_S2_S18	1	(16+2)
AMB16_S2_S36		(32+4)
RAMB16_S4_S4		4
AMB16_S4_S9	1 ,	(8+1)
RAMB16_S4_S18	- +	(16+2)
RAMB16_S4_S36		(32+4)
AMB16_S9_S9		(8+1)
RAMB16_S9_S18	(8+1)	(16+2)
AMB16_S9_S36		(32+4)
RAMB16_S18_S18	(14.2)	(16+2)
AMB16_S18_S36	(10+2)	(32+4)
RAMB16_S36_S36	(32+4)	(32+4)
gle-Port Block RAM Pr	imitives	

Primitive Port Width RAMB16_S1 RAMB16_S2 RAMB16_S4 4 RAMB16_S9 (8+1) RAMB16 S18 (16+2)RAMB16_S36 (32+4)

Single-Port Block RAM Primitive 6,111 Fall 2012

DIP[#:0]

WE

ΕN

SSR

CLK

ADDR[#:0]

2

4

8

16

32

DO[#:0]

DOP[#:0]

Tools will often build these for you...

From Lab 2:

<pre>reg [7:0] segments;</pre>
always @ (switch[3:0]) begin
<pre>case (switch[3:0])</pre>
4'h0: segments[6:0] = 7'b0111111;
4'h1: segments[6:0] = 7'b0000110;
4'h2: segments[6:0] = 7'b1011011;
4'h3: segments[6:0] = 7'b1001111;
4'h4: segments[6:0] = 7'b1100110;
4'h5: segments[6:0] = 7'b1101101;
4'h6: segments[6:0] = 7'b1111101;
4'h7: segments[6:0] = 7'b0000111;
4'h8: segments[6:0] = 7'b1111111;
4'h9: segments[6:0] = 7'b1100111;
4'hA: segments[6:0] = 7'b1110111;
4'hB: segments[6:0] = 7'b1111100;
4'hC: segments[6:0] = 7'b1011000;
4'hD: segments[6:0] = 7'b1011110;
4'hE: segments[6:0] = 7'b1111001;
4'hF: segments[6:0] = 7'b1110001;
<pre>default: segments[6:0] = 7'b00000000;</pre>
endcase
<pre>segments[7] = 1'b0; // decimal point</pre>
end

	HDL Sy:	nthesis		*			
Synthesizing	Unit <	lab2 2>.					
Related	source	file is	"/lab	2 2.v".			
				-			
Found	16x7-	bit RC	M for	signal <\$n000			
Summary:							
inferr	ed 1	ROM(s).					
Unit <lab2_2< td=""><td>> synth</td><td>esized.</td><td></td><td></td></lab2_2<>	> synth	esized.					
Timing constraint: Default path analysis							
Timing constraint: Default path analysis Total number of paths / destination ports: 28 / 7							
Total number	of pat	hs / des	tinatio	n ports: 28 / 7			
Total number Delav:	of pati	hs / des 7.244n	tinatio s (Leve	n ports: 28 / 7			
Total number Delay: Source:	of pati	hs / des 7.244n switch<3	tinatio s (Leve > (PAD)	n ports: 28 / 7 ls of Logic = 3)			
Total number Delay: Source: Destination:	of pat	hs / des 7.244n switch<3 userl<0>	tinatio s (Leve > (PAD) (PAD)	ls of Logic = 3)			
Total number Delay: Source: Destination:	of pati	hs / des 7.244n switch<3 user1<0>	tinatio s (Leve > (PAD) (PAD)	n ports: 28 / 7 ls of Logic = 3)			
Total number Delay: Source: Destination: Data Path: s	of pat	hs / des 7.244n switch<3 user1<0> > to use	tinatio s (Leve > (PAD) (PAD) rl<0>	n ports: 28 / 7 			
Total number Delay: Source: Destination: Data Path: s	of path	hs / des 7.244n switch<3 userl<0> > to use Gate	s (Leve > (PAD) (PAD) rl<0> Net	n ports: 28 / 7			
Total number Total number Delay: Source: Destination: Data Path: s Cell:in->out	of pat witch<3	hs / des 7.244n switch<3 user1<0> > to use Gate Delay	s (Leve > (PAD) (PAD) rl<0> Net Delay	ls of Logic = 3)			
Total number Delay: Source: Destination: Data Path: s Cell:in->out	of pat witch<3 fanout	hs / des 7.244n switch<3 user1<0> > to use Gate Delay 	tinatio s (Leve > (PAD) (PAD) rl<0> Net Delay 1 102	Logical Name			
Total number Delay: Source: Destination: Data Path: s Cell:in->out 	of pat witch<3 fanout 7 1	hs / des 7.244n switch<3 user1<0> > to use Gate Delay 0.825 0.439	tinatio s (Leve > (PAD) (PAD) rl<0> Net Delay 1.102 0.517	ls of Logic = 3) Logical Name 			
Total number Delay: Source: Destination: Data Path: s Cell:in->out IBUF:I->O LUT4:I0->O OBUF:I->O	of pat witch<3 fanout 7 1	hs / des 7.244n switch<3 user1<0> > to use Gate Delay 0.825 0.439 4.361	tinatio s (Leve > (PAD) (PAD) rl<0> Net Delay 1.102 0.517	<pre>hipits 28 / 7 hipits 28 / 7 hipits 28 / 7 hipits 28 hipits 28</pre>			
Total number Delay: Source: Destination: Data Path: s Cell:in->out IBUF:I->O LUT4:I0->O OBUF:I->O	of pat witch<3 fanout 7 1	hs / des 7.244n switch<3 user1<0> > to use Gate Delay 0.825 0.439 4.361	tinatio s (Leve > (PAD) (PAD) rl<0> Net Delay 1.102 0.517	<pre>ls of Logic = 3) Logical Name</pre>			
Total number Delay: Source: Destination: Data Path: s Cell:in->out IBUF:I->O LUT4:IO->O OBUF:I->O 	of pati witch<3 fanout 7 1	hs / des 7.244m. switch<3: userl<0> > to use: Gate Delay 0.825 0.439 4.361 7.244ns	tinatio s (Leve > (PAD) (PAD) rl<0> Net Delay 1.102 0.517 (5.625	Logical Name 			

Source: Xilinx App Note 463 Lecture 10

BRAM Example

	Select Core Type	×
Click open folders	Memories & Storage Elements CAMs CAMs Ref Ref Ref Ref Ref Ref Ref Ref Ref	
Select "Single Port Block Memory"	Single Port Block Memory v6.2	
	< Back Next > Cancel Help	1
Click "Next" a	and then "Finish" on next window	

BRAM Example

Using result in your Verilog

• Look at generated Verilog for module definition (click on "View HDL Functional Model" under Coregen):

• Use to instantiate instances in your code: ram64x8 foo(.addr(addr),.clk(clk),.we(we),.din(din),.dout(dout));

Memory Classification & Metrics

Read- Men	Write nory	Non-Volatile	Read-Only
Random Access	Sequential Access	Read-Write Memory	Memory
SRAM DRAM	FIFO	EPROM E ² PROM FLASH	Mask- Programmed ROM

Key Design Metrics:

- 1. Memory Density (number of bits/mm²) and Size
- 2. Access Time (time to read or write) and Throughput
- 3. Power Dissipation

6.111 Fall 2012	Lecture 10	21	6.111 Fall 2012	Lecture 10	22

Static RAMs: Latch Based Memory

Set Reset Flip Flop

- Works fine for small memory blocks (e.g., small register files)
- Inefficient in area for large memories
- Density is the key metric in large memory circuits

How do we minimize cell size?

Latch and Register Based Memory

Positive Latch Negative Latch

Alternative view

How do we minimize cell size?

23

Memory Array Architecture

Static RAM (SRAM) Cell (The 6-T Cell)

Using External Memory Devices

- Address pins drive row and column decoders
- Data pins are bidirectional: shared by reads and writes

Concept of "Data Bus"

- Output Enable gates the chip's tristate driver
- Write Enable sets the memory's read/write mode
- Chip Enable/Chip Select acts as a "master switch"

MCM6264C 8K x 8 Static RAM

Lecture 10

28

Reading an Asynchronous SRAM

Address	Address Valid
	Access time (from address valid)
E1	
	Access time (from enable low)
OE	
	Bus enable time Bus tristate time
Data (Tristate)	Data Valid

E2 assumed high (enabled), \overline{W} =1 (read mode)

- Read cycle begins when all enable signals (E1, E2, OE) are active
- Data is valid after read access time - Access time is indicated by full part number: $MCM6264CP-12 \rightarrow 12ns$
- Data bus is tristated shortly after \overline{OE} or $\overline{E1}$ goes high

Address Controlled Reads

- Can perform multiple reads without disabling chip
- Data bus follows address bus, after some delay

	6.111 Fall 2012	Lecture 10	29	6.	111 Fall 2012	Lecture 10	30

Writing to Asynchronous SRAM

- Data latched when WE or E1 goes high (or E2 goes low)
 - Data must be stable at this time
 - Address must be stable before \overline{WE} goes low
- Write waveforms are more important than read waveforms
 - Glitches to address can cause writes to random addresses!

6.111 Fall 2012

31

Sample Memory Interface Logic

Tristate Data Buses in Verilog

Synchronous SRAM Memories

• Clocking provides input synchronization and encourages more reliable operation at high speeds

ZBT Eliminates the Wait State

• The wait state occurs because:

- On a read, data is available *after* the clock edge
- On a write, data is set up before the clock edge
- ZBT ("zero bus turnaround") memories change the rules for writes
 - On a write, data is set up after the clock edge (so that it is read on the following edge)
 - Result: no wait states, higher memory throughput

Pipelining Allows Faster CLK

– Good: Greatly reduces CLK-Q delay, allows higher clock (more throughput)

- Bad: Introduces an extra cycle before data is available (more latency)

35

34

EEPROM

Electrically Erasable Programmable Read-Only Memory

EEPROM - The Floating Gate Transistor

This is a non-volatile memory (retains state when supply turned off)

Usage: Just like SRAM, but writes are much slower than reads (write sequence is controlled by an FSM internal to chip)

Common application: configuration data (serial EEPROM)

Lecture 10

Interacting with Flash and (E)EPROM

- Reading from flash or (E)EPROM is the same as reading from SRAM
- Vpp: input for programming voltage (12V)
 - EPROM: Vpp is supplied by programming machine
 - Modern flash/EEPROM devices generate 12V using an on-chip charge pump
- EPROM lacks a write enable
 - Not in-system programmable (must use a special programming machine)
- For flash and EEPROM, write sequence is controlled by an internal FSM
 - Writes to device are used to send signals to the FSM
 - Although the same signals are used, one can't write to flash/EEPROM in the same manner as SRAM

Flash Memory - Nitty Gritty

• Flash memory uses NOR or NAND flash.

- NAND cells connected in series like resembling NAND gate.
- $-\,$ NAND requires 60% of the area compared to NOR. NAND used in flash drives.
- Endurance: 100,000 300,000 p/e cycles
- Life cycle extended through wear -leveling: mapping of physical blocks changes over time.
- Flash memory limitations
 - Can be read or written byte a time
 - Can only be erased block at a time
 - Erasure sets bits to 1.
 - Location can be re-written if the new bit is zero.
- Labkit has 128Mbits of memory in 1Mbit blocks.
 - 3 Volt Intel StrataFlash® Memory (28F128J3A)
 - 100,000 min erase cycle per block
 - Block erasures takes one second
 - $-\$ 15 minutes to write entire flash ROM

http://www.embeddedintel.com/special_features.php?article=124

Dynamic RAM (DRAM) Cell

- Found in all high density memories (one bit/transistor)
- Must be "refreshed" or state will be lost high overhead

Lecture 5

39

6.111 Fall 2012

37

Lecture 10

Asynchronous DRAM Operation

(See datasheets for details)

Memory Devices: Helpful Knowledge

Lecture 10

• SRAM vs. DRAM

- SRAM holds state as long as power supply is turned on. DRAM must be "refreshed" - results in more complicated control
- DRAM has much higher density, but requires special capacitor technology.
- FPGA usually implemented in a standard digital process technology and uses SRAM technology
- Non-Volatile Memory
 - Fast Read, but very slow write (EPROM must be removed from the system for programming!)
 - Holds state even if the power supply is turned off
- Memory Internals
 - Has quite a bit of analog circuits internally -- pay particular attention to noise and PCB board integration
- Device details
 - Don't worry about them, wait until 6.012 or 6.374

Addressing with Memory Maps

6.111 Fall 2012

0xA000 0x9FFF

0x2000

0x0000

ADC

You Should Understand Why...

• control signals such as Write Enable should be registered

Lecture 10

- a multi-cycle read/write is safer from a timing perspective than the single cycle read/write approach
- it is a bad idea to enable two tri-states driving the bus at the same time
- an SRAM does not need to be "refreshed" while a DRAM requires refresh
- an EPROM/EEPROM/FLASH cell can hold its state even if the power supply is turned off
- a synchronous memory can result in higher throughput

6.111 Fall 2012

41

EPROM

Ŷ

Analog

42

Input

る文白

ADC

tress[2:0] Data[7:0]