
Memories
• Memories in Verilog
• Memories on the FPGA
• External MemoriesExternal Memories

-- SRAM (async, sync)
-- DRAM
-- FlashFlash

1Lecture 10

Memories: a practical primer

• The good news: huge selection of technologies
– Small & faster vs. large & slower
– Every year capacities go up and prices go down– Every year capacities go up and prices go down
– New kid on the block: high density, fast flash memories

• Non-volatile, read/write, no moving parts! (robust, efficient)
• The bad news: perennial system bottleneck• The bad news: perennial system bottleneck

– Latencies (access time) haven’t kept pace with cycle times
– Separate technology from logic, so must communicate between

silicon so physical limitations (# of pins R’s and C’s and L’s) limit silicon, so physical limitations (# of pins, R s and C s and L s) limit
bandwidths

• New hopes: capacitive interconnect, 3D IC’s
– Likely the limiting factor in cost & performance of many digital Likely the limiting factor in cost & performance of many digital

systems: designers spend a lot of time figuring out how to keep
memories running at peak bandwidth

– “It’s the memory, stupid”

6.111 Fall 2012 2Lecture 10

Memories in Verilog

• reg bit; // a single register

• reg [31:0] word; // a 32-bit register

reg [31 0] arra [15 0] // 16 32 bit regs• reg [31:0] array[15:0]; // 16 32-bit regs

• reg [31:0] array_2d[31:0][15:0];
// 2 dimensional 32-bit array

• wire [31:0] read_data,write_data;
wire [3:0] index;

// combinational (asynch) read
assign read_data = array[index];

// clocked (synchronous) write
always @(posedge clock)

array[index] <= write_data;a ay[de] te_data;

6.111 Fall 2012 3Lecture 10

Multi-port Memories (aka regfiles)
reg [31:0] regfile[30:0]; // 31 32-bit words

// Beta register file: 2 read ports, 1 write
wire [4:0] ra1 ra2 wa;wire [4:0] ra1,ra2,wa;
wire [31:0] rd1,rd2,wd;

assign ra1 = inst[20:16];
assign ra2 = ra2sel ? inst[25:21] : inst[15:11];
assign wa = wasel ? 5'd30 : inst[25:21];

// read ports// read ports
assign rd1 = (ra1 == 5’d31) ? 32’d0 : regfile[ra1];
assign rd2 = (ra2 == 5’d31) ? 32’d0 : regfile[ra2];
// write port
l @(d lk)always @(posedge clk)
if (werf) regfile[wa] <= wd;

assign z = ~| rd1; // used in BEQ/BNE instructionsassign z | rd1; // used in BEQ/BNE instructions

6.111 Fall 2012 4Lecture 10

FIFOs din

wr FIFO
dout

rd

WIDTH WIDTH

clk

wr

full

reset

FIFO

1<<LOGSIZE
locations

empty

overflow

rd

// a simple synchronous FIFO (first-in first-out) buffer
// Parameters:
// LOGSIZE (parameter) FIFO has 1<<LOGSIZE elements
// WIDTH (parameter) each element has WIDTH bits

clk

// WIDTH (parameter) each element has WIDTH bits
// Ports:
// clk (input) all actions triggered on rising edge
// reset (input) synchronously empties fifo
// din (input, WIDTH bits) data to be stored
// wr (input) when asserted, store new data
// full (output) asserted when FIFO is full
// dout (output, WIDTH bits) data read from FIFO
// rd (input) when asserted, removes first element
// empty (output) asserted when fifo is empty
// overflow (output) asserted when WR but no room, cleared on next RD

module fifo #(parameter LOGSIZE = 2, // default size is 4 elements
WIDTH = 4) // default width is 4 bits

(input clk,reset,wr,rd, input [WIDTH-1:0] din,
output full,empty,overflow, output [WIDTH-1:0] dout);

…
endmodule

6.111 Fall 2012 5Lecture 10

FIFOs in action
// make a fifo with 8 8-bit locations
fifo f8x8 #(.LOGSIZE(3),.WIDTH(8))

(.clk(clk),.reset(reset),
.wr(wr),.din(din),.full(full),
rd(rd) dout(dout) empty(empty).rd(rd),.dout(dout),.empty(empty),
.overflow(overflow));

6.111 Fall 2012 6Lecture 10

FPGA memory implementation

• Regular registers in logic blocks
– Piggy use of resources, but convenient & fast if small

• [Xilinx Vertex II] use the LUTs:
– Single port: 16x(1,2,4,8), 32x(1,2,4,8), 64x(1,2), 128x1
– Dual port (1 R/W, 1R): 16x1, 32x1, 64x1
– Can fake extra read ports by cloning memory: all clones are written

with the same addr/data, but each clone can have a different read
address

• [Xilinx Vertex II] use block ram:
– 18K bits: 16Kx1, 8Kx2, 4Kx4

with parity: 2Kx(8+1), 1Kx(16+2), 512x(32+4)
Si l d l t– Single or dual port

– Pipelined (clocked) operations
– Labkit XCV2V6000: 144 BRAMs, 2952K bits total

6.111 Fall 2012 7Lecture 10

LUT-based RAMs

6.111 Fall 2012 8Lecture 10

LUT-based RAM Modules

// instantiate a LUT-based RAM module
RAM16X1S mymem #(.INIT(16’b0110_1111_0011_0101_1100)) // msb first

(.D(din),.O(dout),.WE(we),.WCLK(clock 27mhz),(.D(din),.O(dout),.WE(we),.WCLK(clock_27mhz),
.A0(a[0]),.A1(a[1]),.A2(a[2]),.A3(a[3]));

6.111 Fall 2012 9Lecture 10

Tools will often build these for you…

reg [7:0] segments;
always @ (switch[3:0]) begin

case (switch[3:0])

===
* HDL Synthesis *
===

Synthesizing Unit <lab2_2>.
Related source file is "../lab2_2.v".

From Lab 2:

case (switch[3:0])
4'h0: segments[6:0] = 7'b0111111;
4'h1: segments[6:0] = 7'b0000110;
4'h2: segments[6:0] = 7'b1011011;
4'h3: segments[6:0] = 7'b1001111;
4'h4: segments[6:0] = 7'b1100110;

...
Found 16x7-bit ROM for signal <$n0000>.
...
Summary:
inferred 1 ROM(s).
...

4'h5: segments[6:0] = 7'b1101101;
4'h6: segments[6:0] = 7'b1111101;
4'h7: segments[6:0] = 7'b0000111;
4'h8: segments[6:0] = 7'b1111111;
4'h9: segments[6:0] = 7'b1100111;
4'hA: segments[6:0] 7'b1110111;

Unit <lab2_2> synthesized.

===
Timing constraint: Default path analysis
Total number of paths / destination ports: 28 / 7

Delay: 7 244ns (Levels of Logic = 3)4'hA: segments[6:0] = 7'b1110111;

4'hB: segments[6:0] = 7'b1111100;
4'hC: segments[6:0] = 7'b1011000;
4'hD: segments[6:0] = 7'b1011110;
4'hE: segments[6:0] = 7'b1111001;
4'hF: segments[6:0] = 7'b1110001;

Delay: 7.244ns (Levels of Logic = 3)
Source: switch<3> (PAD)
Destination: user1<0> (PAD)

Data Path: switch<3> to user1<0>
Gate Net

Cell:in->out fanout Delay Delay Logical Name4 hF: segments[6:0] 7 b1110001;
default: segments[6:0] = 7'b00000000;
endcase
segments[7] = 1'b0; // decimal point

end

--------------------------------- ------------
IBUF:I->O 7 0.825 1.102 switch_3_IBUF
LUT4:I0->O 1 0.439 0.517 Mrom__n0000_inst_lut4_01
OBUF:I->O 4.361 user1_0_OBUF

Total 7.244ns (5.625ns logic, 1.619ns route)

(77 7% l i 22 3% t)(77.7% logic, 22.3% route)

6.111 Fall 2012 10Lecture 10

Block Memories (BRAMs)

(WDATA + WPARITY)*(LOCATIONS) = 18K bits

1,2,4 16K,8K,4K,2K,1K,512
1
2
4
8
1616
32

6.111 Fall 2012 11Lecture 10

BRAM Operation
Data in Data out

BRAM
Single-port

Config.
CLK
WE

Address

Data_in Data_out

CLK

Source: Xilinx App Note 463
6.111 Fall 2012 12Lecture 10

BRAM timing

6.111 Fall 2012 13Lecture 10

Using BRAMs (eg, a 64Kx8 ram)

• From menus: Project New Source…

Select “IP”
Fill in name

Click “Next” when done…
6.111 Fall 2012 14Lecture 10

BRAM Example

Click open folders

Select “Single Port Block
Memory”

Click “Next” and then “Finish” on next window

6.111 Fall 2012 15Lecture 10

BRAM Example

Fill iFill in name
(again?!)

Select RAM vs
ROM

Fill in width
& depth

Usually “Read After
Write” is what you
want

Click “Next” …
6.111 Fall 2012 16Lecture 10

BRAM Example

Can add extra
control pins butcontrol pins, but
usually not

Click “Next” …
6.111 Fall 2012 17Lecture 10

BRAM Example

Select polarity of
control pins; active
high default is
usually just fine

Click “Next” …
6.111 Fall 2012 18Lecture 10

BRAM Example

Click to name a .coe
file that specifies
initial contents (eg,
for a ROM)

Click “Generate” to complete
6.111 Fall 2012 19Lecture 10

.coe file format
i i i li i di 2memory_initialization_radix=2;

memory_initialization_vector=

00000000,
00111110,
0110001101100011,
00000011,
00000011,
00011110

Memory contents with location 0 first, then
location 1, etc. You can specify input radix, in
this example we’re using binary. MSB is on
the left LSB on the right Unspecified 00011110,

00000011,
00000011,

the left, LSB on the right. Unspecified
locations (if memory has more locations than
given in .coe file) are set to 0.

01100011,
00111110,
0000000000000000,
00000000,

6.111 Fall 2012 20Lecture 10

Using result in your Verilog
• Look at generated Verilog for module defintion (click on “View HDL g g (

Functional Model” under Coregen):

• Use to instantiate instances in your code:
ram64x8 foo(.addr(addr),.clk(clk),.we(we),.din(din),.dout(dout));

6.111 Fall 2012 21Lecture 10

Memory Classification & Metrics

Read-Write
Memory Non-Volatile Read-OnlyRead-Write

Memory

Read-Only
MemoryRandom

Access Sequential
Access

EP kSRAM
DRAM FIFO

EPROM
E2PROM
FLASH

Mask-
Programmed

ROM

Key Design Metrics:y g
1. Memory Density (number of bits/mm2) and Size
2. Access Time (time to read or write) and Throughput
3. Power Dissipationp

6.111 Fall 2012 22Lecture 10

Static RAMs: Latch Based Memory

Register Memory
S

Set Reset Flip Flop

D Q
D Q

S Q

QD
D Q

D Q
D Q

D Q
R Q

Address

 Works fine for small memory blocks (e.g., small register files)

Address

 Inefficient in area for large memories
 Density is the key metric in large memory circuits

 ll How do we minimize cell size?

6.111 Fall 2012 23Lecture 10

Latch and Register Based Memory
Positive Latch Negative Latch

Negative latch Positive latch

Register Memory

0
Q

1
Q

D

G

Q D

G

Q
D

Negative latch Positive latch
Q

QM

1
D Q

0
D Q G G

Clk

CLK CLK

Alt ti i Alternative view

How do we minimize cell size?

Memory Array Architecture
S ll ll ll f t ll dV bit li

2L-K Bit Line
Storage Cell

R

Small cells small mosfets small dV on bit line2LxM memory

Th i t b di l d Y t t h h t th i th i h b t d R t t t d th th fil i If th d till h t d l t th i d th i t it i Word LineThe image
cannot be
displayed.
Your
computer
may not
have

The
imag
e
can…

Row D
eco

AK
AK+1

A

2L-K row
by

Mx2K column
cell array

M*2K

odeAL-1
cell array

Amplify swing to
rail-to-rail amplitudeSense Amps/Driver

Column DecodeA0

Input-Output
(M bits)

Selects appropriate word
(i.e., multiplexer)

Column Decode0

AK-1

6.111 Fall 2012 25Lecture 10

Static RAM (SRAM) Cell (The 6-T Cell)
BL

WL

VDD

WL
BLBL

VDD

M5 M6

M4M2

Q
Q QQ

M1 M3 Write: Set BL, BL to (0,VDD)
or (VDD,0) then enable WL (= VDD)

BLBL
(DD) (DD)

Read: Disconnect drivers from BL and
BL, then enable WL (=VDD). Sense a
small change in BL or BL

 State held by cross-coupled inverters (M1-M4)
 Retains state as long as power supply turned on

small change in BL or BL

g p pp y
 Feedback must be overdriven to write into the memory

6.111 Fall 2012 26Lecture 10

Using External Memory Devices

Memory Matrix…

Write
Logic

Row D

Address
Pins

Write enable
Chip Enable

Tri-state Driver
enabley…

Data
Pins

R d

Decoder in out

If enable=0
… Read

LogicSense Amps/Drivers
Column Decoder

Output
Enable

out = Z

If enable =1
out = in

Write enable

• Address pins drive row and column
decoders
D t i bidi ti l h d

• Output Enable gates the
chip’s tristate driver

out = in

• Data pins are bidirectional: shared
by reads and writes

• Write Enable sets the
memory’s read/write mode

• Chip Enable/Chip Select acts p p
as a “master switch”Concept of “Data Bus”

6.111 Fall 2012 27Lecture 10

MCM6264C 8K x 8 Static RAM
S (bidi ti l) d t b

Address
13

Chi E bl E1

On the outside: Same (bidirectional) data bus
used for reading and writing

Chip Enables (E1 and E2)
E1 must be low and E2 must be
hi h t n bl th chip

MCM6264C Data
DQ[7:0]

8
Chip Enables E1

E2

Write Enable WE

Output Enable OE

high to enable the chip
Write Enable (WE)

When low (and chip enabled),
values on data bus are written to
location selected by address busp

On the inside:

location selected by address bus
Output Enable (OE or G)

When low (and chip is enabled),
data bus is driven with value of
selected memory location

DQ[7:0]

Memory matrix
256 rows
32 Column

Ro
w

De
co

de
r

…

A2
A3
A4
A5
A7
A8

E1
E2

y
Ro

Column Decoder
Sense Amps/Drivers

…

A8
A9
A11 W

G Pinout

A 0A1 A 6
A1

0
A1

2

6.111 Fall 2012 28Lecture 10

Reading an Asynchronous SRAM

Address Address Valid
Access time (from address valid)

E1

OE
Access time (from enable low)

Bus tristate time
Data Data Valid

Bus enable time
(Tristate)

E2 d hi h (bl d) W 1 (d d)

• Read cycle begins when all enable signals (E1, E2, OE) are active

E2 assumed high (enabled), W =1 (read mode)

• Data is valid after read access time
– Access time is indicated by full part number: MCM6264CP-12 12ns

• Data bus is tristated shortly after OE or E1 goes high• Data bus is tristated shortly after OE or E1 goes high

6.111 Fall 2012 29Lecture 10

Address Controlled Reads

Address
Access time (from address valid)

Address 3Address 2Address 1

E1

()
Contamination time

Bus tristate
time

OE

Data
Bus enable
time Data Data Data mData m

E2 assumed high (enabled), WE =1 (read mode)

Data
2

Data
3

Data
1

• Can perform multiple reads without disabling chip
• Data bus follows address bus, after some delay

6.111 Fall 2012 30Lecture 10

Writing to Asynchronous SRAM

Address Address Valid
Address setup time Address hold time

E1

WE

p

Write pulse width
WE

Data
Data setup

time Data Valid
Data hold time

• Data latched when WE or E1 goes high (or E2 goes low)

E2 and OE are held high

Data latched when WE or E1 goes high (or E2 goes low)
– Data must be stable at this time
– Address must be stable before WE goes low

• Write waveforms are more important than read waveforms
– Glitches to address can cause writes to random addresses!

6.111 Fall 2012 31Lecture 10

Sample Memory Interface Logic

Clock/E1
OE

Write cycle Read cycle

OE
WE

Address Address for write Address for read

Data Data for write Data read

Write occurs here,
when E1 goes high

Data can be
latched Drive data bus only when

VCC here
y

clock is low
– Ensures address are

stable for writes
Prevents bus FSM

Clock
Control W

E1
SRAM

E2

VCC

ext_chip_enable
ext_write_enable
ext output enable

FPGA

– Prevents bus
contention

– Minimum clock period
is twice memory

 ti

FSM

DQ

Address
Read data

Write
data

(write, read,
reset)

Data[7:0]

Gext_output_enable

ext_data

QD

int_data

access time Address Address[12:0]ext_addressQD

6.111 Fall 2012 32Lecture 10

Tristate Data Buses in Verilog

CE (active low)

OE (active_low)
int dataclk

DQRead data

Write data ext_dataQD

int_dataclk

DQRead data

output CE,OE; // these signals are active low
inout [7:0] ext data;inout [7:0] ext_data;
reg [7:0] read_data,int_data
wire [7:0] write_data;

always @(posedge clk) beginys @(posedge c) beg
int_data <= write_data;
read_data <= ext_data;

end

// Use a tristate driver to set ext_data to a value
assign ext_data = (~CE & OE) ? int_data : 8’hZZ;

6.111 Fall 2012 33Lecture 10

Synchronous SRAM Memories

Write
Logic

Write Enable
Ch E bl

• Clocking provides input synchronization and encourages more
reliable operation at high speeds

R

Data
Pins

Read

Logic Chip EnableMemory
matrix

…

…

Row Decoder

Address
Pins

Read
Logic Output Enable

…
Sense Amps/Drivers

Column Decoder

difference between read and write timings
long “flow-through”

combinational path creates high

W3

CE
R1 R2 W5R4

difference between read and write timings
creates wasted cycles (“wait states”)

combinational path creates high
CLK-Q delay

A3

E
WE
CLK

Address A1 A2 A4 A53

D3Data
1 2 4 5

Q1 Q2 Q4 D5

6.111 Fall 2012 34Lecture 10

ZBT Eliminates the Wait State
h b• The wait state occurs because:
– On a read, data is available after the clock edge
– On a write, data is set up before the clock edge

ZBT (“ b t d”) i h th l f it• ZBT (“zero bus turnaround”) memories change the rules for writes
– On a write, data is set up after the clock edge

(so that it is read on the following edge)
– Result: no wait states higher memory throughputResult: no wait states, higher memory throughput

CE
W3R1 R2 W5R4

WE
CLK

Address A A A A AAddress
Data

A1 A2 A3 A4 A5

Q1 Q2 D3 Q4 D5

Write to A3 Data D3 Write to A5 Data D5Write to A3
requested

Data D3
loaded

Write to A5
requested

Data D5
loaded

6.111 Fall 2012 35Lecture 10

Pipelining Allows Faster CLK
• Pipeline the memory by registering its output

– Good: Greatly reduces CLK-Q delay, allows higher clock (more throughput)
– Bad: Introduces an extra cycle before data is available (more latency)

Data
Pins

Write Enable
Chip EnableMemory

matrix

…
Row Decoder

Address
Pins

ZBT
Write
Logic

As an example, see
the CY7C147X ZBT
S h SRAM

Read
Logic Output Enable

…

er

Sense Amps/Drivers
Column Decoder

pipelining register

Synchronous SRAM

p pel n ng reg ster

CE
WE

W3R1 R2 W5R4

WE
CLK

Address A1 A2 A3 A4 A5

Data Q1 Q2 D3 Q4 D5one-cycle
latency... (ZBT write to A3) (ZBT write to A5)

6.111 Fall 2012 36Lecture 10

EEPROM
Electrically Erasable Programmable Read-Only MemoryElectrically Erasable Programmable Read Only Memory

EEPROM – The Floating Gate Transistor

0 V20 V [Rabaey03]Intel Floating
gate

5 V 0 V

DS

10 V 5 V 20 V

DS

g

Removing programming
voltage leaves charge trapped

Avalanche injection

This is a non-volatile memory (retains state when supply turned off)This is a non-volatile memory (retains state when supply turned off)

Usage: Just like SRAM, but writes are much slower than reads
(write sequence is controlled by an FSM internal to chip)

Common application: configuration data (serial EEPROM)
37Lecture 106.111 Fall 2012

Interacting with Flash and (E)EPROM

• Reading from flash or (E)EPROM is the same as reading from SRAM
• Vpp: input for programming voltage (12V)

– EPROM: Vpp is supplied by programming machine
M d fl h/EEPROM d i 12V i hi h – Modern flash/EEPROM devices generate 12V using an on-chip charge pump

• EPROM lacks a write enable
– Not in-system programmable (must use a special programming machine)

• For flash and EEPROM write sequence is controlled by an internal FSMFor flash and EEPROM, write sequence is controlled by an internal FSM
– Writes to device are used to send signals to the FSM
– Although the same signals are used, one can’t write to flash/EEPROM in the same

manner as SRAM
V (5V)

Address Data

Vcc (5V)Flash/EEPROM block diagram

Chip Enable

Output Enable Programming
voltage (12V)

Charge
pump

EPROM omits
FSM, charge

Write Enable FSM
voltage (12V)

g
pump, and write

enable
6.111 Fall 2012 38Lecture 10

Flash Memory – Nitty Gritty
• Flash memory uses NOR or NAND flash.

– NAND cells connected in series like resembling NAND gate.
– NAND requires 60% of the area compared to NOR. NAND used in flash

drives drives.
– Endurance: 100,000 – 300,000 p/e cycles
– Life cycle extended through wear –leveling: mapping of physical blocks

changes over time.

• Flash memory limitations
– Can be read or written byte a time
– Can only be erased block at a time
– Erasure sets bits to 1Erasure sets bits to 1.
– Location can be re-written if the new bit is zero.

• Labkit has 128Mbits of memory in 1Mbit blocks.
3 Volt Intel StrataFlash® Memory (28F128J3A)– 3 Volt Intel StrataFlash® Memory (28F128J3A)

– 100,000 min erase cycle per block
– Block erasures takes one second
– 15 minutes to write entire flash ROM

6.111 Fall 2012 Lecture 5 39

http://www.embeddedintel.com/special_features.php?article=124

Dynamic RAM (DRAM) Cell
BL Write "1" R d "1"

DRAM uses
Special

Capacitor
St t

CS
M1

BLWL
WL

X GND

Write "1" Read "1"

Structures S

BL
V /2

VDD

GND

VDD/2

To Write: set Bit Line (BL) to 0 or VDD

Cell Plate Si

Capacitor Insulator

St N d P l

Refilling Poly
[Rabaey03]

CBL
VDD/2

sensing
VDD/2

To Write: set Bit Line (BL) to 0 or VDD
& enable Word Line (WL) (i.e., set to VDD)

To Read: set Bit Line (BL) to VDD /2
& bl W d Li (i t it t V)

Storage Node Poly

2nd Field Oxide
Si Substrate

 DRAM relies on charge stored in a capacitor to hold state
 Found in all high density memories (one bit/transistor)

& enable Word Line (i.e., set it to VDD)

 Found in all high density memories (one bit/transistor)
 Must be “refreshed” or state will be lost – high overhead

6.111 Fall 2012 40Lecture 10

Asynchronous DRAM Operation

Address

RAS

Row Col

RAS

CAS

Data

WE

Q (data from RAM)
(Tristate)

t hi h/l b f WE

RAS-before-CAS
for a read or write

CAS-before-RAS
for a refresh

set high/low before
asserting CAS

• Clever manipulation of RAS and CAS after reads/writes provide

for a read or write
(Row and column addresses taken
on falling edges of RAS and CAS)

for a refresh

more efficient modes: early-write, read-write, hidden-refresh, etc.
(See datasheets for details)

6.111 Fall 2012 41Lecture 10

Addressing with Memory Maps
• Address decoder selects memory

– Example: ‘138 3-to-8 decoder
– Produces enable signals

12
:0

]

SRAM 1

12
:0

]SRAM 2

12
:0

]

EPROM

• SRAM-like interface often used
for peripherals

Known as “memory mapped”

Da
ta

[7
:0

]
Ad

dr
es

s[
12

~W~G ~E
1

Da
ta

[7
:0

]
Ad

dr
es

s[
1

~W~G ~E
1

Da
ta

[7
:0

]
Ad

dr
es

s[
12

~G ~E
1

OE– Known as memory mapped
peripherals

Y7C

[1
2:

0]

[1
2:

0]

[1
2:

0]

15
Address[15:0]

WE
OE

‘13
8

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

C
B
A

~G2B
~G2A

G1

13
14
15

EPROM
SRAM 2

0xFFFF

0xE000
0xDFFF

[2
:0

]Memory Map

Bus Enable
Y0

Data[7:0]

a[
7:

0]
s[

2:
0]~W~G ~E
1

SRAM 2
SRAM 1

0xC000
0xBFFF

0xA000
0x9FFF

0 2000

+5V

A l

Da
ta

[
Ad

dr
es

s[

ADC
0x0000

ADC
0x2000
0x1FFF

Analog
Input

6.111 Fall 2012 42Lecture 10

Memory Devices: Helpful Knowledge

• SRAM vs. DRAM
– SRAM holds state as long as power supply is turned on. DRAM

must be “refreshed” – results in more complicated controlmust be refreshed – results in more complicated control
– DRAM has much higher density, but requires special capacitor

technology.
– FPGA usually implemented in a standard digital process

technology and uses SRAM technology technology and uses SRAM technology
• Non-Volatile Memory

– Fast Read, but very slow write (EPROM must be removed from
the system for programming!)
H ld if h l i d ff– Holds state even if the power supply is turned off

• Memory Internals
– Has quite a bit of analog circuits internally -- pay particular

attention to noise and PCB board integrationg
• Device details

– Don’t worry about them, wait until 6.012 or 6.374

6.111 Fall 2012 43Lecture 10

You Should Understand Why…
• control signals such as Write Enable should be registered
• a multi-cycle read/write is safer from a timing perspective

than the single cycle read/write approach
• it is a bad idea to enable two tri-states driving the bus at the

same time
• an SRAM does not need to be “refreshed” while a DRAM

requires refresh
• an EPROM/EEPROM/FLASH cell can hold its state even if the

power supply is turned offp pp y
• a synchronous memory can result in higher throughput

6.111 Fall 2012 44Lecture 10

