
Lab #3 due tonight,
LPSet 8 Thurs 10/11

Pipelining & Verilog
• Latency & Throughput
• Pipelining to increase throughput
• RetimingRetiming
• Verilog Math Functions
• Debugging Hints

1Lecture 96.111 Fall 2012

Sequential Divider
Assume the Dividend (A) and the divisor (B) have N bits. If we
only want to invest in a single N-bit adder, we can build a
sequential circuit that processes a single subtraction at a time p
and then cycle the circuit N times. This circuit works on unsigned
operands; for signed operands one can remember the signs, make
operands positive, then correct sign of result.

Init: P0, load A and B
Repeat N times {

BP A S

N+1N+1

Repeat N times {
shift P/A left one bit
temp = P-B
if (temp > 0)N bits

LSB

0

S0 1

-
N+1N+1

N+1

{Ptemp, ALSB1}
else ALSB0

}
Done: Q in A, R in P>0? S

Lecture 9 2

Q ,

6.111 Fall 2012

Verilog divider.v

6.111 Fall 2012 Lecture 9 3

L. Williams MIT ‘13

Math Functions in Coregen

Wide selection of math functions available

4Lecture 96.111 Fall 2012

Coregen Divider

not necessary manynot necessary many
applications

Details in data sheet.

6.111 Fall 2012 5Lecture 9Lecture 9 56.111 Fall 2012

Coregen Divider

Chose minimium
number for application

Ready For Data: needed
if clocks/divide >1

6.111 Fall 2012 6Lecture 9Lecture 9 66.111 Fall 2012

Performance Metrics for Circuits

time between arrival of new input and generation
of corresponding output.

Circuit Latency (L):
p g p

For combinational circuits this is just tPD.

Rate at which new outputs appear.Circuit Throughput (T):

For combinational circuits this is just 1/tPD or 1/L.

6.111 Fall 2012 7Lecture 9Lecture 9 76.111 Fall 2012

Coregen Divider Latency

Latency dependent on
dividend width +
fractioanl reminder width

6.111 Fall 2012 8Lecture 9Lecture 9 86.111 Fall 2012

Performance of Combinational Circuits

F

For combinational logic:
L = tPD,
T = 1/tPD.

G

HX P(X) We can’t get the answer faster,
but are we making effective use
of our hardware at all times?

X

G(X)
F(X)

P(X)P(X)

F & G are “idle”, just holding their outputs j
stable while H performs its computation

9Lecture 96.111 Fall 2012

R ti i i th ti f i i t d i th t

Retiming: A very useful transform
Retiming is the action of moving registers around in the system
 Registers have to be moved from ALL inputs to ALL outputs or vice versa

Cutset retiming: A cutset intersects the edges, such that this would result in two disjoint
partitions of the edges being cut. To retime, delays are moved from the ingoing to the
outgoing edges or vice versa.outgoing edges or vice versa.

Benefits of retiming:Benefits of retiming:
• Modify critical path delay
• Reduce total number of registers

10Lecture 96.111 Fall 2012

Retiming Combinational Circuits
aka “Pipelining”aka Pipelining

15 15

P(X)25X P(Xi-2)25Xi

20 20

L = 45
T = 1/45

tCLK = 25
L = 2*tCLK = 50
T = 1/tCLK = 1/25

Assuming ideal registers:
i.e., tPD = 0, tSETUP = 0

11Lecture 96.111 Fall 2012

Pipeline diagrams
F

i i+1 i+2 i+3

Clock cycle
F

G

HX P(X)

15

20

25

Input Xi Xi+1 Xi+2 Xi+3

ge
s …

F Reg

G Reg

F(Xi)

G(Xi)

F(Xi+1)

G(Xi+1)

F(Xi+2)

G(Xi+2)pe
lin

e
st

ag
…

G Reg

H Reg

(i) (i+1)

H(Xi)

(i+2)

H(Xi+1)

Pi
p

H(Xi+2)

The results associated with a particular set of input
data moves diagonally through the diagram, progressing
through one pipeline stage each clock cycle.

12Lecture 96.111 Fall 2012

Pipeline Conventions
DEFINITION:

a K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K
registers on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus an 0-stage pipeline.

CONVENTION:
Every pipeline stage, hence every K-Stage pipeline, has a register on its Every pipeline stage, hence every K Stage pipeline, has a register on its
OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers must have a period sufficient to The CLOCK common to all registers must have a period sufficient to
cover propagation over combinational paths PLUS (input) register tPD
PLUS (output) register tSETUP.

The LATENCY of a K-pipeline is K times the period of
the clock common to all registers.

The THROUGHPUT of a K-pipeline is the frequency of
the clock.

13Lecture 96.111 Fall 2012

Ill-formed pipelines

A

Consider a BAD job of pipelining:

21CX A 21

B
Y

Problem:

noneFor what value of K is the following circuit a K-Pipeline? ________

Successive inputs get mixed: e.g., B(A(Xi+1), Yi). This
happened because some paths from inputs to outputs
have 2 registers, and some have only 1!
This CAN’T HAPPEN on a well-formed K pipeline!

14Lecture 96.111 Fall 2012

A pipelining methodology
Step 1:
Add a register on each output.

STRATEGY:
Focus your attention on
placing pipelining registers

Step 2:
Add another register on each
output Draw a cut-set contour

around the slowest circuit
elements (BOTTLENECKS).

output. Draw a cut set contour
that includes all the new
registers and some part of the
circuit. Retime by moving regs A B Cy g g
from all outputs to all inputs of
cut-set.

4 nS 3 nS 8 nS

D
4 nS

F
5 nS

Repeat until satisfied with T. E
2 nS

T = 1/8ns
L = 24ns

15Lecture 96.111 Fall 2012

Pipeline Example

A CX
2 1

OBSERVATIONS:
• 1-pipeline improves

12 3

BY

2

1

1 1 pipeline improves
neither L or T.

• T improved by breaking
long combinational paths,
ll f l k

2 3

1

LATENCY THROUGHPUT

allowing faster clock.
• Too many stages cost L,

don’t improve T.

0-pipe:
L E

4 1/4
• Back-to-back registers

are often required to
keep pipeline well-
formed.1-pipe: 4 1/4

2-pipe: 4 1/2

3-pipe: 1/26 1/2

16Lecture 96.111 Fall 2012

Increasing Throughput: Pipelining
 l Idea: split processing across

several clock cycles by dividing
circuit into pipeline stages
separated by registers that hold separated by registers that hold
values passing from one stage to
the next.

= register

Throughput = 1/4tPD,FA instead of 1/8tPD,FA)
17Lecture 96.111 Fall 2012

How about tPD = 1/2tPD,FA?

= register

Lecture 9 186.111 Fall 2012

Timing Reports

65mhz = 27mhz*2.4

Synthesis
Multiple: 7.251ns

Synthesis
report

Total Propagation
delay: 34.8ns

Lecture 9 196.111 Fall 2012

History of Computational Fabrics
 Discrete devices: relays, transistors (1940s-50s)
 Discrete logic gates (1950s-60s)
 Integrated circuits (1960s-70s)

 e.g. TTL packages: Data Book for 100’s of different parts
 Gate Arrays (IBM 1970s)

 Transistors are pre-placed on the chip & Place and Route software
puts the chip together automatically only program the interconnectputs the chip together automatically – only program the interconnect
(mask programming)

 Software Based Schemes (1970’s- present)
 Run instructions on a general purpose core

 Programmable Logic (1980’s to present)
 A chip that be reprogrammed after it has been fabricated
 Examples: PALs, EPROM, EEPROM, PLDs, FPGAs

E ll t t f i f V il Excellent support for mapping from Verilog
 ASIC Design (1980’s to present)

 Turn Verilog directly into layout using a library of standard cells
 Effective for high volume and efficient use of silicon area Effective for high-volume and efficient use of silicon area

Lecture 9 206.111 Fall 2012

Reconfigurable Logic

• Logic blocks
– To implement combinational

and sequential logic
• InterconnectInterconnect

– Wires to connect inputs and
outputs to logic blocks

• I/O blocks
– Special logic blocks at Sp c a og c oc s at

periphery of device for
external connections

K i• Key questions:
– How to make logic blocks programmable?

(after chip has been fabbed!)
– What should the logic granularity be?

H t k th i bl ?– How to make the wires programmable?
(after chip has been fabbed!)

– Specialized wiring structures for local
vs. long distance routes?
H i s l i bl k?

LogicLogic
Inputs Outputs

n m

Q

Q
SET

CLR

D

– How many wires per logic block?

Configuration

Lecture 9 216.111 Fall 2012

Programmable Array Logic (PAL)

• Based on the fact that any combinational logic can be
realized as a sum-of-products

• PALs feature an array of AND-OR gates with programmable PALs feature an array of AND OR gates with programmable
interconnect

i t ANDinput
signals

output

AND
array OR array

signals

programming of
product terms

programming of
sum terms

Lecture 9 226.111 Fall 2012

RAM Based Field Programmable
Logic - XilinxLogic Xilinx

CLB CLB

Slew
Rate

Control

Passive
Pull-Up,

Pull-Down

Vcc

Switch
Matrix

D Q
Output
Buffer

Input

Pad

CLB CLB

Programmable
Interconnect I/O Blocks (IOBs)

Delay

p
Buffer

Q D

Interconnect

SD

S/R
Control

F'
DING

G4
G3

C4C1 C2 C3

 H1 DIN S/R EC

Configurable
Logic Blocks (CLBs)

D Q

RD
EC

D Q
SD

EC

S/R
Control

1

F'
G'

H'

DIN

F
G'

H'

G'
H'

H
Func.
Gen.

G
Func.
Gen.

F
Func.
Gen.

G3
G2
G1

F4
F3
F2
F1

Y

Logic Blocks (CLBs)RD
1

F'

H'

 K
X

Lecture 9 236.111 Fall 2012

LUT Mapping

• N-LUT direct implementation of a truth table: any function
of n-inputs.

• N-LUT requires 2N storage elements (latches)N LUT requires 2 storage elements (latches)
• N-inputs select one latch location (like a memory)

Inputs

Why Latches and Not Registers?

Output

Latches set by configuration bitstream

4LUT example

Latches set by configuration bitstream

Lecture 9 246.111 Fall 2012

Configuring the CLB as a RAM

Memory is built using Latches not FFs

16x2

Read is same a LUT Function!
Lecture 9 256.111 Fall 2012

Xilinx 4000 Interconnect

Lecture 9 266.111 Fall 2012

Xilinx 4000 Interconnect Details

Wires are not ideal!

Lecture 9 276.111 Fall 2012

Add Bells & Whistles

Hard
Processor

Gigabit
Serial

I/O

Serial

18 Bit
36 Bit

Multiplier

ZZZ ImpedanceControl

18 Bit

BRAM

Programmable
Termination

ZZZ ImpedanceControl

Clock
Mgmt

Courtesy of David B. Parlour, ISSCC 2004 Tutorial,
“The Reality and Promise of Reconfigurable Computing in Digital Signal Processing”

Lecture 9 286.111 Fall 2012

The Virtex II CLB (Half Slice Shown)

Lecture 9 296.111 Fall 2012

Adder Implementation
Cout

LUT: AB

Y = A  B  CinA
B

Dedicated carry logic

1 half-Slice = 1-bit adder

Dedicated carry logic

Cin

Lecture 9 306.111 Fall 2012

Virtex-6

DSP with 25x18
multiplier

Gigabit ethernet

CLB Dist RAM Block RAM Multipliers

Gigabit ethernet
support

Virtex 2 8,448 1,056kbit 2,592kbit 144 (18x18)
Virtex 6 667,000 6,200kbit 22,752kbit 1,344 (25x18)
Spartan 3E 240 15kbit 72kbit 4 (18x18)

Lecture 9 316.111 Fall 2012

Design Flow - Mapping

• Technology Mapping: Schematic/HDL to Physical Logic units
• Compile functions into basic LUT-based groups (function of

target architecture)target architecture)

a
c

Q

Q
SET

CLR

D

LUT
Q

Q
SET

CLR

D
b
c

d
b

always @(posedge clock or negedge reset)
begin

if (! t)if (! reset)
q <= 0;

else
q <= (a & b & c) | (b & d);

end

Lecture 9 326.111 Fall 2012

Design Flow – Placement & Route
Pl i l i l i i l d i • Placement – assign logic location on a particular device

LUT

LUT

LUT

 Routing – iterative process to connect CLB inputs/outputs and IOBs. Optimizes critical path
delay – can take hours or days for large, dense designs

Iterate placement if timing
not met

Satisfy timing?  Generate
Bitstream to config device

Challenge! Cannot use full chip for reasonable speeds (wires are not ideal).

Typically no more than 50% utilization.
Lecture 9 336.111 Fall 2012

Example: Verilog to FPGA

module adder64 (• Synthesismodule adder64 (
input [63:0] a, b;
output [63:0] sum);

assign sum = a + b;

• Synthesis
• Tech Map
• Place&Route

assign sum = a + b;
endmodule

Virtex II XC2V200064-bit Adder Example Virtex II – XC2V200064 bit Adder Example

Lecture 9 346.111 Fall 2012

How are FPGAs Used?

Logic Emulation
 Prototyping

 Ensemble of gate arrays used to emulate a Ensemble of gate arrays used to emulate a
circuit to be manufactured

 Get more/better/faster debugging done than
with simulation

 Reconfigurable hardware
 One hardware block used to implement more

than one function

 Special-purpose computation engines
 Hardware dedicated to solving one problem

(or class of problems)
 Accelerators attached to general-purpose

FPGA-based Emulator

 Accelerators attached to general-purpose
computers (e.g., in a cell phone!)

(courtesy of IKOS)
FPGA based Emulator

Lecture 9 356.111 Fall 2012

Summary

• FPGA provide a flexible platform for implementing digital
computingcomputing

• A rich set of macros and I/Os supported (multipliers, block
RAMS, ROMS, high-speed I/O)

• A wide range of applications from prototyping (to validate a • A wide range of applications from prototyping (to validate a
design before ASIC mapping) to high-performance spatial
computing

• Interconnects are a major bottleneck (physical design and Interconnects are a major bottleneck (physical design and
locality are important considerations)

Lecture 9 366.111 Fall 2012

Lab 4 Car Alarm Design Approach

• Read lab/specifications carefully, use reasonable
interpretation

• Use modular design – don’t put everything into labkit v• Use modular design don t put everything into labkit.v
• Design the FSM!

– Define the inputs
D fin th utputs– Define the outputs

– Transition rules
• Logical modules:

f– fsm.v
– timer.v
– siren.v

f l– fuel_pump.v
• Run simulation on each module!
• Use hex display: show state and time
• Use logic analyzer

6.111 Fall 2012 Lecture 9 37

C Al I t & O t tCar Alarm – Inputs & Outputs

Car Alarm – CMOS Implementation

• Design Specs
– Operating voltage 8‐18VDC
– Operating temp: ‐40C +65C
– Attitude: sea level
– Shock/Vibration

• Notes

Fuel pump
relayCloaking

device

– Protected against 24V power
surges

– CMOS implementation
– CMOS inputs protected againstCMOS inputs protected against

200V noise spikes
– On state DC current <10ma
– Include T_PASSENGER_DELAY

and Fuel Pump Disableand Fuel Pump Disable
– First car was stolen in Cambridge
– System disabled (cloaked) when

being serviced.

Debugging Hints – Lab 4

• Implement a warp speed debug mode for the one_hz clock.
This will allow for viewing signals on the logic analyzer or
Modelsim without waiting for 27 million clock cycles. Modelsim without waiting for 27 million clock cycles.
Avoids recomplilations.

assign debug_on = switch[6]; // switch[6] is not used
always @ (posedge clk) begin

if (count == (debug_on ? 3 : 26_999_999)) count <= 0;
else count <= count +1;

end

assign one_hz = (count == (debug_on ? 3 : 26_999_999)) ;

Lecture 9 406.111 Fall 2012

One Hz Ticks in Modelsim

l #5 lk ! lk

To create a one hz tick, use the following in the Verilog test fixture:

always #5 clk=!clk;
always begin

#5 tick = 1;
#10 tick = 0;
#15#15;

end

initial begin
// I iti li I t// Initialize Inputs
clk = 0;
tick = 0; . . .

Lecture 9 416.111 Fall 2012

For Loops, Repeat Loops
in Simulation

integer i; // index must be declared as integer
integer irepeat;

// this will just wait 10ns, repeated 32x.
// simulation only! Can implement #10 in hardware!

irepeat =0;
t(32) b irepeat(32) begin

#10;
irepeat = irepeat + 1;
end

// this will wait #10ns before incrementing the for loop
for (i=0; i<16; i=i+1) begin

#10 // it #10 b f i t#10; // wait #10 before increment.
// @(posedge clk);
// add to index on posedge

end

Lecture 9 426.111 Fall 2012

Edge Detection

reg signal delayed;

Edge Detection

reg signal_delayed;

always @(posedge clk)
signal_delayed <= signal;

assign rising_edge = signal && !signal_delayed;
assign falling_edge = !signal && signal_delayed;

Lecture 9 436.111 Fall 2012

Shift RegisterShift Register

always @(posedge clk) beginy (p g) g
if (reset) byte_out <=0;
else byte_out <= {serial_in, byte_out[7:1]};

end

Lecture 9 446.111 Fall 2012

