Lab #3 due tonight,
LPSet 8 Thurs 10/11

Pipelining & Verilog

Latency & Throughput
Pipelining to increase throughput
Retiming

Verilog Math Functions
Debugging Hints

Lecture 9

Sequential Divider

Assume the Dividend (A) and the divisor (B) have N bits. If we
only want to invest in a single N-bit adder, we can build a
sequential circuit that processes a single subtraction at a time
and then cycle the circuit N times. This circuit works on unsigned
operands; for signed operands one can remember the signs, make
operands positive, then correct sign of result.

Init: P<0O, load A and B
Repeat N times {

= shift P/A left one bit
P |-—| A I-—S |0| B | temp = P-B
Rlois if (temp > 0)

{P<temp, A g1}
else A <O

Done: Q in A, R iIn P
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Verilog divider.v
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Lecture 9

L. Williams MIT '13

Math Functions in Coregen
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Coregen Divider

T Divider Generator v1.0 ﬁ

Divider Generator v1.0

Compaonent Name | divider_exampls

Algoithm Selection
DMDEND[31:0] B10]2UOTIENT

Please select ane of the following algerithm pes for use with this implementatian

Algorithm Type: | Fied ]
Oplional Pins
] ACLR
[ SCLR
e
SCLR/CE Picry not necessary many
SCLR overides CE app“caﬂons

RFD CE overiides SCLR

LK

Details in data sheet.

4/ Page1of2 <Back | Hes» J[ Firish ][ Cancel
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Coregen Divider

I Divider Generator v1.0

) Signed (2's complement)

Remainder Options

RFD Remainder Tyne: | Remainder (vl

Fractional Width: 16 Range: 2.32

Ready For Data: needed
if clocks/divide >1

CLK

mgjc PL Divider Generator v1.0
Fised Implementation Options
Bus Widths
OMDEND[E:0] [#1:0]QUATIENT
Dividend \width : 16 Range: 2.32
DIISOR[1:0] [31:0]REMAINDER
Divisar ywidth : "H_S | Range: 2.32
Divider Type \
) Clocks per Division: |1 [ L
i Operand Sian Chose minimium
® Unsigned number for application
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Performance Metrics for Circuits

Circuit Latency (L): time between arrival of new input and generation

of corresponding output.

For combinational circuits this is just tpp.

Circuit Throughput (T): Rate at which new outputs appear.

For combinational circuits this is just 1/t or 1/L.
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Coregen Divider Latency

L i a A IS AW AN L W AT AW AN LA WATATA

dividand ..;( LI 1 ] :.’i ¥
dvisor T E T T -
co T o -
Wt ? —
quat Y aavE } T T}
romd , .! mremb T cremd
latency -

Figure 2: Latency Example (Clocks per Division = 4)

Tatle 4 Latency of Fixed-point Solution Based on Divider Parameters

Signed | Fractional Clks/Div Latency v |
False | False 1 Me2
False False =1 M3
False True 1 MeFa2
False | True -1 MeF 3 Latency dependent on
) | Fakse 1 Med dividend width +
True False =1 M+5 fractioanl reminder width
True True 1 MeFad
True True =1 MeF45
Note: M- , Fuly ” width

The divclk_sel parameter allows a range of chodces of throughput versus area. With divelk_sel = 1, the
core is fully pipelined, so it will have maximal throughput of one division per clock cyce, but will
occupy the most area. The divelk_sel selections of 2, 4 and 8 reduce the throughput by those respective
factors for smaller core sizes.
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Performance of Combinational Circuits

For combinational logic:
L = fpp,
T= I/TPD.

We can't get the answer faster,
but are we making effective use
of our hardware at all times?

X 2
FOX) X0 2
G(X) XXX 2
P(X) X002
H_a
F & G are “idle", just holding their outputs
stable while H performs its computation
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Retiming: A very useful transform

Retiming is the action of moving registers around in the system
= Registers have to be moved from ALL inputs to ALL outputs or vice versa

—E 1 —

Cutset retiming: A cutset intersects the edges, such that this would result in two disjoint
partitions of the edges being cut. To retime, delays are moved from the ingoing to the
outgoing edges or vice versa.

Benefits of retiming:
» Modify critical path delay
« Reduce total number of registers
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Retiming Combinational Circuits
aka "Pipelining”

,_'157

X o P(X) q X;

Assuming ideal registers: toy = 25

L2 15 i, top =0, togryp =0 L= 2%, =50
T=1/45 7= tax= 1729
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Pipeline diagrams

wo Clock cycle

i i+1 i+2 i+3

“ Input X; Xin Xio | Xz

&

S

§ F Reg F(X,) F(Xi*l) F(xi+2)
§_ G Reg 6(X) | 6(Xi1) | 6(Xi.2)
2

H Reg H(X) | H(X) [H(Xi.2)

The results associated with a particular set of input
data moves diagonally through the diagram, progressing
through one pipeline stage each clock cycle.
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Pipeline Conventions

DEFINITION:
a K-Stage Pipeline ("K-pipeline") is an acyclic circuit having exactly K
registers on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus an O-stage pipeline.

CONVENTION:
Every pipeline stage, hence every K-Stage pipeline, has a register on its
OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers must have a period sufficient to
cover propagation over combinational paths PLUS (input) register tpy
PLUS (output) register tsgryp.

The LATENCY of a K-pipeline is K times the period of
the clock common to all registers.

The THROUGHPUT of a K-pipeline is the frequency of
the clock.
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Tll-formed pipelines

Consider a BAD job of pipelining:
)

—— ’
X ~ & c L 2
)
B —
For what value of K is the following circuit a K-Pipeline? none

Problem:

Successive inputs get mixed: e.g., B(A(X..1), ;). This
happened because some paths from inputs to outputs
have 2 registers, and some have only 1!

This CAN'T HAPPEN on a well-formed K pipeline!
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A pipelining methodology

STRATEGY:

Focus your attention on
placing pipelining registers
around the slowest circuit
elements (BOTTLENECKS).

Step 1:
Add a register on each output.

Step 2:

Add another register on each
output. Draw a cut-set contour
that includes all the new
registers and some part of the
circuit. Retime by moving regs
from all outputs to all inputs of

- o

e
1
|
— A B G S
—4nS 3nS 8 nS \
1 I 1
F

cut-set. D 1
4 nS 5nS T
1 1
. L. . 1
Repeat until satisfied with T. \LE |
\ [2nS |
7z -
T=1/8ns hRS ot

S ———-
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Pipeline Example

2 3 1
v a H—F— .
L {sJF
2»3
B
1

OBSERVATIONS:

+ 1-pipeline improves
neither Lor T.

* T improved by breaking
long combinational paths,

y
allowing faster clock.

+ Too many stages cost L,
don’t improve T.

LATENCY | THROUGHPUT
O-pine: + Back-to-back registers
-pipe: 4 1/4 are often required to
Toie: keep pipeline well-
-pipe: 4 1/4 formed.
2-pipe: 4 1/2
3-pipe: 6 1/2
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Increasing Throughput: Pipelining

an

Idea: split processing across

several clock cycles by dividing
circuit into pipeline stages
separated by registers that hold
values passing from one stage to |

1
|

the next. 5

J\
-+
A
+

Throughput = 1/4+tpy £, instead of 1/8tpy£a)
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HOW about TPD = l/ztpD'FA?

+ = register
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Timing Reports

XIhx - IS - faf3/aLhEn s mAL e du user/g/gim,Yallz012/lab)_alphajiabd_aiphaise - [Synthess Report]
W B s Poject fowce Brcss fedow tee
L TR X ae GRS REAR A

= Y A

-

LA VDD

AN
65mhz = 27mhz*2.4

Synthesis

report Multiple: 7.251ns

£

Total Propagation
delay: 34.8ns

m_—|u|\

“CProcemsen | | O Sy | Syirasin et |
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History of Computational Fabrics

m Discrete devices: relays, transistors (1940s-50s)
m Discrete logic gates (1950s-60s)

m Integrated circuits (1960s-70s)
O e.g. TTL packages: Data Book for 100’s of different parts

m  Gate Arrays (IBM 1970s)

O Transistors are pre-placed on the chip & Place and Route software
puts the chip together automatically — only program the interconnect
(mask programming)

m Software Based Schemes (1970’s- present)
O Run instructions on a general purpose core
m Programmable Logic (1980’s to present)

O A chip that be reprogrammed after it has been fabricated

o Examples: PALs, EPROM, EEPROM, PLDs, FPGAs

O Excellent support for mapping from Verilog

m  ASIC Design (1980’s to present)
O Turn Verilog directly into layout using a library of standard cells
o Effective for high-volume and efficient use of silicon area
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Reconfigurable Logic

* Logic blocks

— To implement combinational
and sequential logic

e Interconnect

— Wires to connect inputs and
outputs to logic blocks

e TI/O blocks
— Special logic blocks at

periphery of device for
external connections

* Key questions:

— How to make logic blocks programmable?
(after chip hasgbeen fabbed!?

— What should the logic granularity be?

— How to make the wires programmable?
(after chip has been fabbed!) n

— Specialized wiring structures for local Inputs [ Outputs
vs. long distance routes? .

— How many wires per logic block?

Configuration

6.111 Fall 2012 Lecture 9
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Programmable Array Logic (PAL)

* Based on the fact that any combinational logic can be
realized as a sum-of-products

* PALs feature an array of AND-OR gates with programmable

interconnect
input —_———1 AND
signals array OR array

output
signals

JU

\7WK2

]
] ]
7

programming of programming of
product terms sum terms
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RAM Based Field Programmable
Logic - Xilinx

e g g

Hm ) NI ﬁﬁiﬂjﬁﬁﬁﬁ
% ﬂj}ﬂi}ﬂj}ﬂj}ﬂj}ﬂj}i}%
W iF IF 2F 1F 2F 1F 3F5
gl WSS SRS RN
Programmable 1+ I+
Interconnect %i} ff,} ff,} f.} fl} f.} f.} i}% I/0 Blocks (IOBs)
e S QIFIFIFIFIFIFIFIFD
%ﬁﬁﬁﬁﬂﬁiig

Heddoidd

Configurable
Logic Blocks (CLBs)

pi=
gi=

oo
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LUT Mapping

« N-LUT direct implementation of a truth table: any function
of n-inputs.

¢ N-LUT requires 2N storage elements (latches)

* N-inputs select one latch location (like a memory)

Inputs

H

Why Latches and Not Registers?

T
51
3

-
[+
ﬂ
S

=
(s3]
>
-

— Output

latch Latches set by configuration bitstream
>~

4LUT example
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Configuring the CLB as a RAM

Xilinx 4000 Interconnect

= I e UM
I I I | Memory is built using Latches not FFs LB ) » LB J e
wE 0, oy EC 7 r' r
[ p4 X Y Doubles
L | -
Dﬁ — Dm/ PSM PSM Singles
iy e hiUx =] 1 1 )¢ ' % Doubles
GyeeeGy 4 e 10f18 ; J l L OS’\& Qse‘* 5}0
CaTcH — cLe ce | ¢ cLe o 5 & )
anl — il =~
’ f— WRITE PULSE ADDRESS P ST . S
}lGxZ — : X : : : ;
] PSM PSM HHH
—— ©omn T + Six Tas::iTcrans;s:;rs
D_ — _ X I 1 s I I K ': IERNNEE E I:ferfnnh:crp:;.m
WRITE  |—— 18LATCH ) P 0 I O O
. A DEGODER [——  ARRAY IMUX| F J [ J [
FivorFe A — ce | < cL8 \ cL8 xeso0
— 26: Programmable Switch Matrix (PSM)
el H [T L
- S . : e with
Figure 28: Single- and Double-Length Lines, with
s Programmable Switch Matrices (PSMs)
gure 4: 16x2 (or 16x1) Edge-Triggered Single-Port RAM Read is same a LUT Function!
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Xilinx 4000 Interconnect Details Add Bells & Whistles
| |
L L Hard
' DOUBLE
= g }
ﬁ SINGLE
< DOUBLE . .
E E Gigabit
LONG .
X = Serial
NN
) DIREGT T T 4 |/O
B 3
e =i ) TR L
: B uew Wires are not ideal! Multiplier
Programmable |
Lil V . .
: dn tons Termination Clock
U, e % %, BRAM Mgmt
e € %v\:‘ Courtesy of David B. Parlour, ISSCC 2004 Tutorial,
“The Reality and Promise of Reconfigurable Computing in Digital Signal Processing”
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The Virtex IT CLB (Half Slice Shown)

SHIFTIN cout

SOPIN = iy
y > SOPOUT
0
ODual-Port 1 YEMUX
D1 8hifi-Reg MUXCY, e
Gl Ad ! 1
3 = a3 DU
= wa CIRAM
CIROM
G - A1 D
e = wea GYMUX v
WGE3 waa @ .i)
WGE2 wG2 I
WG [ war M
ws Dl
ALTDIG ! +
&
b pRoD)
v [ows
H
BY
SLICEWE[2:0] SHIFTOUT SR
S, N
TMUXCY,
0 1

1

CE = :
D_q] Shared batween |

|

x&y Registers

Adder Implementation

L Y=A®B®Cin

out
SHIFTIN LUT A®B Cout
SOPIN =t CRCY
y > SOPOUT
0
ODual-Port YBMUX
OshitReg | XY =8
G4 = £
@3 > a3 QLT :
B Az ORAM
OROM
—s 1
A WG4 > wed e
WGE wGs nl
WG2 > W2 pogs | [}
WG > WG1
WS Dl
ALTDIG i :
= D :

G1
=
A
avD_L—GD

SLICEWE[2:0]

CE =>
Shared batween|
cLK D—'j] x &y Rougisters
SR D—djfi

Dedicated carry logic

DIG

1 half-Slice = 1-bit adder

ciN -~ Cin
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Virtex-6 Design Flow - Mapping
R e e e T L + Technology Mapping: Schematic/HDL to Physical Logic units
7 e e P e » Compile functions into basic LUT-based groups (function of
\ i e s o o target architecture)
- = '- a:. 1‘:0 uI:; ::; elm 0‘:1 °: :q 1:1
[ — 2 a Cc
DSP with 25x18 Masium Linsr 1/0: Selnot 107 Intarace Pires (GTX Transceivee) b 57 g — 57 g
multiplier e Y N ey > G bttt » — LUT
O A0D0E 400D N b el — 5
B0 OO(IU  GOMLD0) 00 [30) d P | LR
Gigabit ethernet T O8N B0 Tao() o)
support 1900km 19004
CLB Dist RAM Block RAM | Multipliers a'ggﬁ @(posedge clock or negedge reset)
if (! reset)
Virtex 2 8,448 1,056kbit 2,592kbit | 144 (18x18) q<=0:
Virtex 6 667,000 6,200kbit 22,752kbit | 1,344 (25x18) e'zec (@&b&o) | (bad)
Spartan 3E | 240 15kbit 72Kkbit 4 (18x18) end
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Design Flow - Placement & Route

 Placement - assign logic location on a particular device

=l ]
EEEE |
--.'//M

m Routing — iterative process to connect CLB inputs/outputs and IOBs. Optimizes critical path
delay — can take hours or days for large, dense designs

DD=DK -
erate placement if timing
not met

|:| I:l I:I Satisfy timing? - Generate
-J Dh [ ]

Bitstream to config device
Challenge! Cannot use full chip for reasonable speeds (wires are not ideal).

Typically no more than 50% utilization.
6.111 Fall 2012 Lecture 9
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Example: Verilog to FPGA

module adder64 (
input [63:0] a, b;
output [63:0] sum); —

* Synthesis
* Tech Map
* Place&Route

assign sum =a + b;
endmodule

64-bit Adder Example

Virtex Il = XC2V2000
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How are FPGAs Used?

Logic Emulation

= Prototyping
O Ensemble of gate arrays used to emulate a
circuit to be manufactured
O Get more/better/faster debugging done than
with simulation

m Reconfigurable hardware

O One hardware block used to implement more
than one function

[ ncien ] |
_ﬂ% m Special-purpose computation engines
B | e mﬁl sl Hig) O Hardware dedicated to solving one problem

(or class of problems)

O Accelerators attached to general-purpose
computers (e.g., in a cell phone!)

FPGA-based Emulator
(courtesy of IKOS)
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Summary

» FPGA provide a flexible platform for implementing digital
computing

* A rich set of macros and I/Os supported (multipliers, block
RAMS, ROMS, high-speed I/0)

* A wide range of applications from prototyping (to validate a
design before ASIC mapping) to high-performance spatial
computing

« Interconnects are a major bottleneck (physical design and
locality are important considerations)
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6.111 Fall 2012

Lab 4 Car Alarm Design Approach

* Read lab/specifications carefully, use reasonable
interpretation
 Use modular design - don't put everything into labkit.v
* Design the FSM!
— Define the inputs
— Define the outputs
— Transition rules
* Logical modules:
- fsm.v
— timer.v
— siren.v
— fuel_pump.v
* Run simulation on each module!
* Use hex display: show state and time
* Use logic analyzer

Lecture 9
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Car Alarm - Inputs & Outputs

Inputs:

« passenger door switch
* driver door switch

+ ignition switch

* hidden switch

+ brake pedal switch

Outputs:
* fuel pump power
« status indicator

/ * siren

Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

Car Alarm - CMOS Implementation

* Design Specs
— Operating voltage 8-18VDC
— Operating temp: -40C +65C
— Attitude: sea level
— Shock/Vibration

* Notes

— Protected against 24V power
surges

— CMOS implementation

— CMOS inputs protected against
200V noise spikes

— On state DC current <10ma

— Include T_PASSENGER_DELAY
and Fuel Pump Disable

— First car was stolen in Cambridge

— System disabled (cloaked) when
being serviced.

Debugging Hints - Lab 4

» Implement a warp speed debug mode for the one_hz clock.
This will allow for viewing signals on the logic analyzer or
Modelsim without waiting for 27 million clock cycles.
Avoids recomplilations.

assign debug_on = switch[6]; // switch[6] is not used
always @ (posedge clk) begin
if (count == (debug_on ? 3
else count <= count +1;
end

: 26_999 999)) count <= 0;

assign one_hz = (count == (debug_on ? 3 : 26_999_999)) ;
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One Hz Ticks in Modelsim

To create a one hz tick, use the following in the Verilog test fixture:

always #5 clk=Iclk; P L e T e LR T T LI T
always begin Am s Ga Al &
#5 tick=1; .
#10 tick = 0;
#15;
end
initial begin
// Initialize Inputs
clk=0;
tick=0; ...
s i w7
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For Loops, Repeat Loops
in Simulation

integer i; // index must be declared as integer
integer irepeat;

/I this will just wait 10ns, repeated 32x.
/l simulation only! Can implement #10 in hardware!
irepeat =0;
repeat(32) begin
#10;
irepeat = irepeat + 1,
end

// this will wait #10ns before incrementing the for loop
for (i=0; i<16; i=i+1) begin
#10; // wait #10 before increment.
I @(posedge clk);
/l add to index on posedge
end

Lecture 9
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Edge Detection

reg signal_delayed:;

always @(posedge clk)
signal_delayed <= signal;

assign rising_edge = signal && Isignal_delayed:;
assign falling_edge = Isignal && signal_delayed;

|Ete Ent Yiew Ad Fomal Teoh Wndow

O -sE-@ sv@u2 AES| sHEan
g e |0 @prUNu® WPERRDE|| L5

LAgg|| v mnkx @ 44§ 10 W]
| wenwm| ]

6.111 Fall 2012 Lecture 9 43

6.111 Fall 2012

Shift Register

Eis Eat Yww Add Fgmat Tsch fwdee
-E @ IRBO: AER SERN '
tes (0 iR UG MRFFEUBA [ SE T S

k> dacea|| LmiE]
[ el |

always @(posedge clk) begin

if (reset) byte_out <=0;

else byte_out <= {serial_in, byte_out[7:1]}:
end
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