ICS 233, Term 141

Computer Architecture & Assembly Language

Quiz#6

Date: Monday, Dec. 22, 2014

Q1. Consider the single-cycle datapath and control given below along with ALU and Next PC blocks design for the MIPS processor implementing a subset of the instruction set:

(i) Show the control signals generated for the execution of the following instructions by filling the table given below:

Ор	RegDst	RegWrite	ExtOp	ALUSrc	ALUOp	Beq	Bne	J	MemRead	MemWrite	MemtoReg
R-type											
xori											
lw											
bne											

The format of these instructions is given below for your reference:

	Instruction	Meaning	Format					
sub	rd, rs, rt	rd = rs - rt	$Op^6 = 0$	rs ⁵	rt ⁵	rd ⁵	0	0x22
xori	rt, rs, imm ¹⁶	$rt = rs \wedge imm^{16}$	0x0e	rs ⁵	rt ⁵	i	imm ¹⁶	
lw rt, imm ¹⁶ (rs)		rt = MEM[rs+imm16]	0x23	rs ⁵	rt ⁵	imm ¹⁶		
bne	rs, rt, label	branch if (rs != rt)	0x05	rs ⁵	rt ⁵	i	imm ¹⁶	

- (ii) We wish to add the following instructions to the MIPS single-cycle datapath. Add any necessary datapath modifications and control signals needed for the implementation of these instructions. Show only the <u>modified</u> and <u>added</u> components to the datapath. Show the values of the control signals to control the execution of each instruction.
 - a. lui

Instruction		Meaning	Format					
lui	rt, imm ¹⁶	$rt = imm^{16} << 16$	$Op^6 = 0xf$	0	rt ⁵	imm ¹⁶		

b. sltiu

Instruction		Meaning	Format			
sltiu	rt, rs, imm ¹⁶	rt=(rs <imm?1:0)< th=""><th>$Op^6 = 0xb$</th><th>rs⁵</th><th>rt⁵</th><th>imm¹⁶</th></imm?1:0)<>	$Op^6 = 0xb$	rs ⁵	rt ⁵	imm ¹⁶

c. bgtz

Instruction		Meaning	F	nat	
bgtz	rs, label	branch if (rs>0)	$Op^6 = 7 rs^5$	0	imm ¹⁶

- (iii) Assume that the propagation delays for the major components used in the datapath are as follows:
 - Instruction and data memories: 150 ps
 - ALU and adders: 100 ps
 - Register file access (read or write): 60 ps
 - Main control: 20 ps
 - ALU control: 20 ps

Ignore the delays in the multiplexers, PC access, extension logic, and wires. What is the cycle time for the single-cycle datapath given above?