Name:

COE 301/ICS 233, Term 161

Computer Architecture & Assembly Language Quiz# 5 Solution

Date: Tuesday, Dec. 25, 2016

Q1. A benchmark program runs for 100 seconds. We want to improve the speedup of the benchmark by a factor of 3. We enhance the floating-point hardware to make floating point instructions run 5 times faster. How much of the initial execution time would floating-point instructions have to account for to show an overall speedup of 3 on this benchmark?

Speedup = 1 / (f/s + (1-f) => 3 = 1 / (f/5+(1-f) => f/5 + 1-f = 1/3 => f + 5 - 5f = 5/3 => 4f = 3.33 => f = 0.833Thus, floating-point instructions must account for 83.3% of the initial execution time to show an overall speedup of 3 on this benchmark.

Q2. Consider the following fragment of MIPS code. Assume that a and b are arrays of words and the base address of a is in \$a0 and the base address of b is in \$a1. How many instructions are executed during the running of this code? If ALU instructions (addu and addiu) take 1 cycle to execute, load/store (lw and sw) take 5 cycles to execute, and the branch (bne) instruction takes 3 cycles to execute, how many cycles are needed to execute the following code (all iterations). What is the average CPI?

	addu \$t0, \$zero, \$zero	# i = 0
	addu \$t1, \$a0, \$zero	<pre># \$t1 = address of a[i]</pre>
	addu \$t2, \$a1, \$zero	<pre># \$t2 = address of b[i]</pre>
	addiu \$t3, \$zero, 101	# \$t3 = 101 (max i)
loop:	lw \$t4, 0(\$t2)	# \$t4 = b[i]
	addu \$t5, \$t4, \$s0	# \$t5 = b[i] + c
	sw \$t5, 0(\$t1)	# a[i] = b[i] + c
	addiu \$t0, \$t0, 1	# i++
	addiu \$t1, \$t1, 4	<pre># address of next a[i]</pre>
	addiu \$t2, \$t2, 4	<pre># address of next b[i]</pre>
	bne \$t0, \$t3, loop	# loop if (i != 101)

The loop body will be executed 101 times. Thus, the total number of instructions executed per class is:

Class	Instruction Count
addu and addiu	4 + 101x4 = 408
lw and sw	101x2=202
bne	101

Thus, the total number of instruction executed = 408 + 202 + 101 = 711 instruction. Total number of cycles needed to execute the code = 408x1+202x5+101x3=1721 cycle. The average CPI = 1721/711 = 2.42