COE 301/ICS 233, Term 172

Computer Architecture & Assembly Language Quiz# 4 Solution

Date: Sunday, March 11, 2018

- **Q.1.** Implement the following two procedures using MIPS assembly language. Use MIPS programing convention in saving registers.
 - (a) A procedure, RSum, that computes the sum of a given row. Assume that the procedure receives as parameters the address of the array in register \$a0, the number of columns in register \$a1, and the index of the row to be summed in register \$a2. The procedure should return the sum of the row in register \$v0.

RSum:	
xor \$v0, \$v0, \$v0	# sum=0
xor \$t0, \$t0, \$t0	# i=0
# Computing starting ad	ddress of row
mul \$t1, \$a1, \$a2	
sll \$t1, \$t1, 2	
add \$t1, \$t1, \$a0	#t2 = starting address of row \$a2
Loop:	
lw \$t2, (\$t1)	
add \$v0, \$v0, \$t2	# adding column elements
addi \$t1, \$t1,4	# incrementing to next column element
addi \$t0, \$t0, 1	# i = i + 1
bne \$t0, \$a1, Loop	
jr \$ra	

(b) A procedure, ArrayRowSum, that displays the sums of all rows in the array based on using RSum procedure. Assume that the procedure receives as parameters the address of the array in register \$a0, the number of rows in register \$a1, and the number of columns in register \$a2. Each row sum should be printed in a new line. To print an integer in register \$a0, use syscall with \$v0=1. To print a character in \$a0, use syscall with \$v0=11.

ArrayRowSum: addi \$sp, \$sp, -20 # allocate memory on stack sw \$ra, (\$sp) # save \$ra sw \$s0, 4(\$sp) # saving needed registers sw \$s1, 8(\$sp) sw \$s2, 12(\$sp) sw \$s3, 16(\$sp)

move \$s0, \$a0 # Array address move \$\$1, \$a1 # Number of rows move \$s2, \$a2 # Number of colums xor \$s3, \$s3, \$s3 # i = 0 Loop2: move \$a0, \$s0 move \$a1, \$s2 move \$a2, \$s3 jal RSum move \$a0, \$v0 li \$v0, 1 # print row sum syscall li \$a0, '\n' # print new line li \$v0, 11 syscall addi \$s3, \$s3, 1 bne \$s3 \$s1, Loop2 # restore \$ra lw \$ra, (\$sp) *#* restore saved registers lw \$s0, 4(\$sp) lw \$s1, 8(\$sp) lw \$s2, 12(\$sp) lw \$s3, 16(\$sp) addi \$sp, \$sp, 20 #free memory from stack jr \$ra