Name: KEY Id#

ICS 233, Term 081

Computer Architecture & Assembly Language

Quiz# 4

Date: Saturday, Dec. 20, 2008

Q.1. Given that Multiplicand=1011 and Multiplier=1011. Using the refined signed multiplication hardware, show the signed multiplication of Multiplicand by Multiplier. The result of the multiplication should be an 8 bit signed number in HI and LO registers. Show the steps of your work by filling the given table.

Iteration		Multiplicand	Sign	Product=HI,LO
0	Initialize (LO = Multiplier)	1011		0000 1011
1	$LO[0] = 1 \Rightarrow ADD$		1	1011 1011
	Shift Product = (HI, LO) right 1 bit	1011		1101 1101
2	$LO[0] = 1 \Rightarrow ADD$		1	1000 1101
	Shift Product = (HI, LO) right 1 bit	1011		1100 0110
3	$LO[0] = 0 \Rightarrow Do Nothing$		1	1100 0110
	Shift Product = (HI, LO) right 1 bit	0101		1110 0011
4	$LO[0] = 1 \Rightarrow SUB (ADD 2's compl)$	_	0	0011 0011
	Shift Product = (HI, LO) right 1 bit			0001 1001

Q.2. Given that **Dividend=1111** and **Divisor=0101**. Using the **refined unsigned division** hardware, show the **unsigned** division of **Dividend** by **Divisor**. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work by filling the given table.

Iteration		Remainder	Quotient	Divisor	Difference
0	Initialize	0000	1111	0101	
1	SLL, Difference	0001	1110	0101	1100
	Diff < 0 => Do Nothing	0001	111 0		
2	SLL, Difference	0011	11 0 0	0101	1110
	Diff < 0 => Do Nothing	0011	11 00		
3	SLL, Difference	0111	1 00 0	0101	0010
	Rem = Diff, set lsb Quotient	0010	1 001		
4	SLL, Difference	0101	001 0	0101	0000
	Rem = Diff, set lsb Quotient	0000	0011		