Name: KEY Id#

COE 301/ICS 233, Term 151

Computer Architecture & Assembly Language

Quiz# 3

Date: Sunday, Oct. 25, 2015

Q1. Write a procedure, **GCD**, that receives two positive numbers in \$a0 and \$a1 and returns their greatest common divisor in register \$v0. It is required that the procedure **preserves the content of all used registers** according to the MIPS programming convention by saving them and restoring them on the stack. The pseudo code of the GCD procedure is given below:

```
int gcd(int m, int n) {
          if ((m % n) == 0)
              return n;
          else
              return gcd(n, m % n);
      }
GCD:
      divu $a0, $a1
      mfhi $t0
      bne $t0, $0, Else
      move $v0, $a1
      jr $ra
      Else:
      addi $sp, $sp, -4
      sw $ra, ($sp)
      move $a0, $a1
      move $a1, $t0
      jal GCD
      lw $ra, ($sp)
      addi $sp, $sp, 4
      jr $ra
```

(i) Given that Multiplicand=1010 and Multiplier=1011, using signed multiplication, show the signed multiplication of Multiplicand by Multiplier. The result of the multiplication should be an 8 bit signed number in HI and LO registers. Show the steps of your work.

Iteration		Multiplicand	Sign	Product = HI,LO
0	Initialize (LO = Multiplier)	1010		0000 101 1
1	$LO[0] = 1 \Rightarrow ADD$		1	1010 1011
	Shift Product = (HI, LO) right 1 bit	1010		1101 010 1
2	$LO[0] = 1 \Rightarrow ADD$		1	0111 0101
	Shift Product = (HI, LO) right 1 bit	1010		1011 101 0
3	$LO[0] = 0 \Rightarrow Do nothing$		1	1011 1010
	Shift Product = (HI, LO) right 1 bit	1010		1101 110 1
4	$LO[0] = 1 \Rightarrow SUB$		0	0011 1101
	Shift Product = (HI, LO) right 1 bit			0001 1110

(ii) Given that **Dividend=1011** and **Divisor=0010**, Using **unsigned division**, show the **unsigned** division of **Dividend** by **Divisor**. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work.

Iteration		Remainder	Quotient	Divisor	Difference
		(HI)	(LO)		
0	Initialize	0000	1011	0010	
1	1: SLL, Difference	0001	0110	0010	1111
	2: Diff < 0 => Do Nothing	0001	0110	0010	
2	1: SLL, Difference	0010	1100	0010	0000
	2: Rem = Diff, set lsb Quotient	0000	110 1	0010	
3	1: SLL, Difference	0001	1010	0010	1111
	2: Diff < 0 => Do Nothing	0001	1010	0010	
4	1: SLL, Difference	0011	0100	0010	0001
	2: Rem = Diff, set lsb Quotient	0001	0101	0010	