Name: KEY Id#

ICS 233, Term 142

Computer Architecture & Assembly Language

Quiz# 3

Date: Tuesday, March 17, 2015

Q1. Assuming that functions F and G receive two arguments in \$a0 and \$a1 and return their results in \$v0, implement the function F given below saving needed registers on the stack. Save changed registers according to the assumed programming convention.

```
int F(int a, int b) {
               return a+G(b, G(a, b));
       }
F:
       addiu $sp, $sp, -12 # frame = 12 bytes
               $ra, 0($sp)
                             # save $ra
       SW
               $a0, 4($sp)
                             # save argument a
       SW
               $a1, 8($sp)
                             # save argument b
       sw
                             # call g(a,b)
               G
       jal
                             # $a0 = b
               $a0, 8($sp)
       lw
       move
              $a1, $v0
                             \# \$a1 = g(a,b)
               G
                             \# call g(b, g(a,b))
       ial
                             # a0 = a
               $a0, 4($sp)
       lw
               v0, a0, v0 # v0 = a+G(b, G(a, b))
       addu
               $ra, 0($sp)
                             # restore $ra
       lw
       addiu
              $sp, $sp, 12
                             # free stack frame
                             # return to caller
       jr
               $ra
```

Q2. Given that **Multiplicand=1010** and **Multiplier=0111**, using the **refined signed multiplication** hardware, show the **signed** multiplication of **Multiplicand** by **Multiplier**. The result of the multiplication should be an 8 bit **signed** number in HI and LO registers. Show the steps of your work.

Iteration		Multiplicand	Sign	Product = HI,LO
0	Initialize (LO = Multiplier)	1010		0000 011 1
1	$LO[0] = 1 \Rightarrow ADD$		1	1010 0111
	Shift Product = (HI, LO) right 1 bit	1010		1101 001 1
2	$LO[0] = 1 \Rightarrow ADD$		1	0111 0011
	Shift Product = (HI, LO) right 1 bit	1010		1011 100 1
3	$LO[0] = 1 \Rightarrow ADD$		1	0101 1001
	Shift Product = (HI, LO) right 1 bit	1010		1010 110 <mark>0</mark>
4	$LO[0] = 0 \Rightarrow Do nothing$		1	1010 1100
	Shift Product = (HI, LO) right 1 bit			1101 0110

Q3. Given that **Dividend=1011** and **Divisor=0011**, Using the **refined unsigned division** hardware, show the **unsigned** division of **Dividend** by **Divisor**. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work.

Iteration		Remainder	Quotient	Divisor	Difference
		(HI)	(LO)		
0	Initialize	0000	1011	0011	
1	1: SLL, Difference	0001	0110	0011	1110
	2: Diff < 0 => Do Nothing				
2	1: SLL, Difference	0010	1100	0011	1111
	2: Diff < 0 => Do Nothing				
3	1: SLL, Difference	0101	1000	0011	0010
	2: Rem = Diff, set lsb Quotient	0010	100 1		
4	1: SLL, Difference	0101	0010	0011	0010
	2: Rem = Diff, set lsb Quotient	0010	0011		