Name: KEY Id#

ICS 233, Term 072

Computer Architecture & Assembly Language

Quiz# 2

Date: Wednesday, March 5, 2008

- **Q1.** Consider an 8-bit register that has the binary number 10010110. Determine the decimal value of the number if it represents:
 - (i) An unsigned number.

(ii) A signed number in sign-magnitude representation.

(iii) A signed number in 1's complement representation.

1's complement of
$$10010110 = 01101001 = (64+32+8+1) = +105$$

Thus, 10010110 represents -105

(iv) A signed number in 2's complement representation.

2's complement of 10010110 = 01101010 = (64+32+8+2) = +106Thus, 10010110 represents -106

- **Q2.** Perform the following arithmetic operations assuming that numbers are represented using **8-bit 2's complement** representation. Indicate in your answer when an <u>overflow</u> occurs.
 - (i) FF + FF

There is no overflow as we are adding two negative numbers and we got a negative number.

(ii)
$$FE - 80$$

$$= FE + 2$$
's comp. of $80 = FE + 80 = 7E$

There is overflow as we are adding two negative numbers and we got a positive.

Q3. Fill the blanks in the following questions:

- (i) Assuming unsigned number representation, $(F1)_{16}$ represents the decimal number = 15x16+1=241.
- (ii) The decimal number 1020 is represented in binary as <u>1111111100</u>.
- (iii) The binary number 01100011 represents character **c**, and uses an <u>even</u> parity bit. Note that the ASCII code of character **A** is 41H and that of character **a** is 61H.
- (iv) Assuming 4-bit 2's complement representation, the smallest (negative) number is $\underline{1000}$ in binary and $\underline{-8}$ in decimal and the largest (positive) number is $\underline{0111}$ in binary and $\underline{+7}$ in decimal.