Name: Id#

ICS 233, Term 063

Computer Architecture & Assembly Language Quiz# 1

Date: Saturday, July 14, 2007

	Q1.	Fill	the	blanks	in	the	foll	lowing	questions
--	-----	------	-----	--------	----	-----	------	--------	-----------

1.	Assuming 6-bit 2's complement representation, the smallest (negative) number is in binary and in decimal and the largest (positive)								
	number is in binary and in decimal.								
2.	Consider an 8-bit register that has the binary number 10110100. The decimal value of this number as a signed number in sign-magnitude representation is while in 1's complement representation it is and in 2's complement representation it is								
3.	Assuming 8-bit 2`s complement representation, the number F0 represents the decimal number								
4.	The binary number 01100100 represents character, and uses an parity bit. Note that the ASCII code of character A is 41H and that of character a is 61H.								
5.	The register is the register in the CPU that holds the address of the next instruction to be fetched from memory.								
6.	The register is the register in the CPU that stores the machine language instructions, temporarily, after the instructions are fetched from memory.								
7.	Given that a wafer can be diced into 2000 dies, out of which 800 dies are defective. Then, the yield is								
8.	Given a magnetic disk with Rotation speed = 7200 RPM (rotations per minute). Then, the average rotation latency, i.e. time to locate needed sector is								

9			is a	spec	ific interfac	ce tha	t the ha	rdware	provides
	-level softwa s and memory		includes	the	instruction	set,	progran	nmer a	ccessible
10	::	is a small f	ast memor	y tha	t acts as a b	ouffer	for the m	nain me	emory.
	efit of the prog					e reso	ources of	a com	iputer for
	r binary form		n program	that c	converts syr	mbolic	version	s of ins	structions
operation	ons.	is	componer	nt of	the proces	ssor t	hat perf	orms a	rithmetic
can be i	and address bo nterfaced with that can be re	the CPU	is		b	ytes aı	nd the m	aximur	
	e following an aplement repr AF								

ii. 81 – 7D