103

5 MIPS Assembly Language

e [oday, digital computers are almost exclusively programmed using
high-level programming languages (PLs), e.g., C, C++, Java

e [he CPU fetch—execute cycle, however, Is not prepared to directly
execute high-level constructs like if-then-else, do-while, arithmetic,
method Iinvocations, etc.

e Instead, a CPU can execute a limited number of rather primitive
Instructions, 1its machine language instruction set

— Machine language Instructions are encoded as bit patterns which are
iInterpreted during the instruction decode phase

— A C/C++/Java compiler is needed to translate high-level constructs
Into a series of primitive machine instructions

104

Why machine language?

e Even with clever compllers available, machine language level programming

s still of importance:

— machine language programs can be carefully tuned for speed (e.g.,
computationally heavy simulations, controlling graphics hardware)
— the size of machine language programs is usually significantly smaller

than the size of high-level PL code
— specific computer features may only be available at the machine

language level (e.g., |/O port access in device drivers)

e For a number of small scale computers (embedded devices, wearable

computers)

— high-level PL compilers are not available yet
— or high-level PLs are simply not adequate because compilers introduce

uncertainty about the time cost of programs (e.g., brake control in a

car)

105

Machine language vs. assembly language

e Real machine language level programming means to handle the bit
encodings of machine instructions

Example (MIPS CPU: addition $t0 < $t0 + $t1):
1000010010100000000100000

e Assembly language introduces symbolic names (mnemonics) for
machine Instructions and makes programming less error-prone:

Example (MIPS CPU: addition $t0 < $t0 + $t1):
add $t0, $t0, $t1

e An assembler translates mnemonics into machine instructions

: 1:1 : : :
— Normally: mnemonic <— machine instruction
— Also: the assembler supports pseudo instructions which are translated
: : : : : : 1:n : : .
into series of machine instructions (mnemonic <— machine instruction)

106

The MIPS R2000/R3000 CPU

e Here we will use the MIPS CPU family to explore assembly programming

— MIPS CPU originated from research project at Stanford, most
successful and flexible CPU design of the 1990s

— MIPS CPUs were found in SGI graphics workstations, Windows CE
handhelds, CISCO routers, and Nintendo 64 video game consoles

e MIPS CPUs follow the RISC (Reduced Instruction Set Computer) design

principle:

— limited repertoire of machine instructions
— limited arithmetical complexity supported
— extensive supply of CPU registers (reduce memory accesses)

e Here: work with MIPS R2000 instruction set (use MIPS R2000 simulator
SPIM: http://www.cs.wisc.edu/"larus/spim.html)

107

MIPS: memory layout

e The MIPS CPU is a 32-bit architecture (all registers are 32 bits wide)

— Accessible memory range: 0x00000000—0xFFFFFFFF

e MIPS is a von-Neumann computer: memory holds both instructions (text)
and data.

— Specific memory segments are coventionally used to tell instructions
from data:

Address Segment

Ox7FFFFFFF stack

))

T T
0x10000000 data

0x00400000 text
0x00000000 reserved

— If a program Is loaded into SPIM, Its .text segment Is automatically
placed at 0x00400000, Its .data segment at 0x10000000

108

MIPS: 32-bit, little endian

e A MIPS word has 32 bits (a halfword 16 bits, a byte 8 bits)

e [he MIPS architecture is little-endian: in memory,
a word (halfword) is stored with its least significant byte first

— Example (representation of 32-bit word 0x11223344 at address n):

Address n n+1 n+2 n+3

Value 0x44 O0x33 0x22 O0Ox11

(Intel Pentium: big-endian)

e MIPS requires words (and halfwords) to be stored at aligned addresses:

— If an object Is of size s bytes, Its storage address needs to be divisble by
s (otherwise: CPU halts with address error exception)

MIPS: registers

e MIPS comes with 32 general purpose registers named $0...$31

Registers also have symbolic names reflecting their conventional® use:

Register

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14
$15

A TS
$zero
$at
$vO
$vi
$a0
$ail
$a2
$a3
$t0
$t1
$t2
$t3
$t4
$t5
$t6
$t7

constant 0

used by assembler
function result
function result
argument 1
argument 2
argument 3
argument 4
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary

Register

$16
$17
$18
$19
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$30
$31

Alias

$s0
$s1
$s2
$s3
$s4
$s5
$s6
$s7
$t8
$t9
$k0
$k1
$gp
$sp
$fp
$ra

saved temporary
saved temporary
saved temporary
saved temporary
saved temporary
saved temporary
saved temporary
saved temporary
unsaved temporary
unsaved temporary
reserved for OS kernel
reserved for OS kernel
pointer to global data
stack pointer

frame pointer

return address

8Most of these conventions concern procedure call and return (library interoperability)

109

110

MIPS: load and store

e [ypical for the RISC design, MIPS is a load-store architecture:

— Memory Is accessed only by explicit load and store instructions

— Computation (e.g., arithmetics) reads operands from registers and
writes results back into registers

e MIPS: load word/halfword /byte at address a into target register r

(r < (a)):
Instruction
1w r, a
lh r, a sign extension
b r,a sign extension
lhu r, a no sign extension

lbu r, a no sign extension

e Example (load word/halfword/byte into temporary registers):

__start:

memory:

.text
.globl

MIPS: load and store

_start

load with sign extension

1w
1h
1b

load without sign extension

1lhu
1bu

.data

.word

$t0, memory

$t1, memory

$t2, memory

$t3, memory

$t4, memory

OxABCDEOS80

little endian: S8OEOCDAB

Register Value

$t0
$t1
$t2
$t3
$t4

OxABCDEOS8O0
OxFFFFEO80
OxFFFFFF80
0x0000E080
0x00000080

111

112

MIPS: load and store

e MIPS: store word/halfword/byte in register r at address a (a < r):

Instruction Remark Pseudo?
SW I, a
shr,a stores low halfword
sbr,a stores low byte

Example (swap values in registers $t0 and $t1):

.text
.globl __start
__start:

swap values $tO and $t1 ... slow!
SW $t0, x

SW $t1, y

1w $t0, vy

1w $t1, x

.data

.word 0x000000FF

.word OxABCDEOS8O

113

MIPS: move

e MIPS can move data between registers directly (no memory access
involved)

Instruction Remark Pseudo?
move I, S target r, source s (r < s) X

Example (swap values in registers $t0 and $t1, destroys $t2):

.text
.globl __start

__start:
swap values $tO0 and $t1 (clobbers $t2)

move $t2, $tO
move $t0, $ti1
move $t1, $t2

no .data segment

— By convention, destroying the contents of the $tn registers is OK
($sn registers are assumed intact once a procedure returns @)

114

MIPS: logical instructions

e MIPS CPUs provide instructions to compute common boolean functions

Instruction Remark Pseudo?

and r, s, t r<s-t
andi r,s,c r<s-c (c constant)
or r,s,t r<—s—+t
orir,s,c r< s+c (cconstant)
nor r,s, t r<—s—+t
xor r,s,t r<+ sXOR t
xori r,s,c r <+ sXOR c (c constant)
not r, s r<s X

— The andi, ori, xori instructions use immediate addressing: the
constant c Is encoded In the instruction bit pattern
Example (bit pattern for instruction andi $x, $y, ¢ with
0 < x,y <31):

001100 .beb ,,beb b bbbbbbbbbbbbbbbh

andl c (16 bit)

115

MIPS: pseudo instructions

e [he MIPS standard defines the CPU instruction set as well as pseudo
instructions

e [he assembler translates pseudo instructions into real MIPS instructions

Example (translation of pseudo instructions):

Pseudo instruction MIPS instruction

not r, s nor r, s, $0
move r, S or r, s, $0
1ir, ¢ ori r, $0, c load immediate (c: 16 bit constant)

e How does the assembler translate 1i r, 0OxABCDEFO0O
(c in ori is 16 bit only)? @

Pseudo instruction MIPS instructions® Remark
1i r, OXABCDEFOO 1lui $at, OxABCD (c: 32 bit constant)
ori r, $at, OXEF00

'MIPS instruction: lui r, c: load constant halfword c into upper halfword of register r

116

MIPS: using pseudo instructions

e Example (replace the low byte of $t0 by the low byte of $t1, leaving
$t0 otherwise intact—use bitmasks and logical instructions):

.text

.globl __start
__sStart:

1i $t0, 0x11223344

1i $t1, 0x88776655

paste the low byte of $tl1 into the low byte of $tO
($t0 = 0x11223355)

and $t0, $t0, OxFFFFFFOO # pseudo
and $t1, $t1, OxFF # assembler translates -> andi
or $t0, $t0, $t1

no .data segment

— Expand the pseudo instruction:
Pseudo instruction MIPS instructions

and $t0, $t0, OXFFFFFFO0O 1lui $at, OxFFFF
ori $at, OxFFO0O
and $t0, $t0, $at

117

MIPS: optimized register swap

e Question: swap the contents of register $t0 and $t1 without using
memory accesses and without using temporary registers)

.text
.globl __start
__start:
swap values of $t0 and $tl1 (xor-based)
Xor $t0, $tO0, $t1
x0T $t1, $t0, $t1
Xor $t0, $tO0, $t1

no .data segment

— Explain how this “xor swap” works!
Remember:
@ aXOR0=a
® aXORa=0

118

MIPS: arithmetic instructions

e MIPS provides unsigned and signed (two's complement) 32-bit integer

arithmetics

Instruction Remark Pseudo?
add r, s, t r<—s—+1t

addu r,s,t without overflow

addi r, s, C rFr<Ss—+2¢c¢

addiu r,s, ¢ without overflow
sub r, s, t r<—s—t

subu r,s,t without overflow

mulo r, S, t F<sXxt X
mul r,s,t without overflow X
div r, s, t r< s/t X
divu r,s,t without overflow X

— The 64-bit result of mulo (mul) is stored in the special registers $hi
and $1o; $1o is moved into rtY
— div (divu): MIPS places the quotient in $1o, remainder in $hi; $1o is

moved Into r

19Access to $1o, $hi: mflo, mfhi (read) and mtlo, mthi (write)

MIPS: artihmetic and shift /rotate instructions

Instruction Remark Pseudo?
abs r, s r < |s| X
negr,s r < —s X
negu r, s without overflow X

rem r, s, t r < remainder of s/t X

remu r, S, t without overflow X

sllr,s,cC r < shift s left c bits, rj .1 < 0

sllv r,s,t r < shift s left t bits, rp, +—71 < 0

srlr,s,cC r < shift s right ¢ bits, r3;_c41 31 < 0
srlv r,s,t r <— shift s right t bits, r31_¢11 31 < 0
srar,s,c < shift s right c bits, r31_c11 31 ¢ S31
srav r,s,t r < shift s right t bits, r3;_+11_ 31 < S31
rolr,s,t r < rotate s left t bits

ror r,s, t r < rotate s right t bits X

X

e Question: How could the assembler implement the rol, ror pseudo
Instructions?

120

MIPS: shift/rotate instructions

e MIPS assemblers implement the pseudo rotation instructions (rol, ror)

based on the CPU shifting instructions:

__start:

.text

.globl _start

rotate left 1 bit
1i $t0, 0x80010004
rol $t1, $t0, 1

rotate right 3 bits
1i $t0, 0x80010004
ror $t1, $tO0, 3

no .data segment

__start:

.text
.globl __start

rotate left 1 bit

lui $at, 0x8001

ori $t0, $at, 0x0004
srl $at, $tO0, 31

sll $t1, $t0, 1

or $t1, $t1, $at

rotate right 3 bits

lui $at, 0x8001

ori $t0, $at, 0x004
sll $at, $t0, 29
srl $t1, $to, 3

or $t1, $t1, Pat

no .data segment

121

MIPS: branch instructions

e Branch instructions provide means to change the program control flow
(manipulate the CPU IP register)

— The CPU can branch unconditionally (jump) or depending on a

specified condition (e.g., equality of two registers, register < 0, ...)

— |n assembly programs, the branch target may be specified via a

label—internally the branch instruction stores an 16-bit offset

again: 1w $tO,
sub $tO0,
beqz $tO,
b $t0,
exit: sw $t1,

— With a 16-bit offset,

backward (forward)

memory
$to, 1

exit # jump offset: 2 instructions
again # jump offset: -4 instructions g?
memory

MIPS can branch 21° — 1 (2!°) instructions

bgt r, s,/
ble r, s,/

blt r, s,/

MIPS: branch instructions

r>20
r<o
F =
r %0

r>=s

r>s

r<<s

IP </ X

X

1t $at, r,s: $at <« 1if r < s, $at « 0 otherwise.

MIPS instructions

beq $zero, $zero, /

beq r, $zero, /
bne r, $zero, /
slt $at, r, st
beq $at, $zero, /
slt $at, s, r

bne $at, $zero, /
slt $at, s, r

beq $at, $zero, /
slt $at, r, s

bne $at, $zero, /

122

123

MIPS: comparison instructions

e Compare the values of two registers (or one register and a constant)

successful: r <1
falls: r <0

— Comparison {

Instruction Comparison Remark Pseudo? MIPS instructions
slt r,s,t s<t
sltur,s,t s<t unsigned
sltir,s,c s<cC c 16-bit constant
sltiur,s,c s<c unsigned
seqfr,sS,t S = X beq s, t, 3
ori r, $zero, O
beq $zero, $zero, 2
ori r, $zero, 1
sne r,S,t s#t X
sger,S,t s>t X
sgeu r,s,t s>t unsigned X
sgtr,s,t s>t X
sgtur,s,t s>t unsigned X
sler,s,t s<t X
sleur,s,t s<t unsigned X

124

MIPS: division by zero, overflow

e Arithmetic exceptions (division by 0, overflow during multiplication) are
handled on the MIPS instruction layer itself:

— MIPS instructions for div $t0, $t1, $t2:

bne $t2, $zero, 2

break $0 # exception: divsion by O
div $t1, $t2 # quotient in $lo, remainder in $hi
mflo $tO

— MIPS instructions for mulo $t0, $t1, $t2:

mult $t1, $t2 # result bits 31..0 in $lo, 63..32 in $hi
mfhi $at
mflo $tO

sra $t0, $t0, 31 # $t0 = 0x00000000 or OxFFFFFFFF (sign bit)
beq $at, $t0, 2

break $0 # exception: arithmetic overflow

mflo $tO

125

Compute Fibonacci numbers (iteratively)

e The Fibonacci numbers!? are an infinite sequence of positive integers
(originally used to describe the development of rabbit poulations)

— Start of sequence:
0,1,1,2,3,5,8,13,21,34,55, 89, 144, 233,377,610, 987, . ..
— The n-th Fibonacci number is recursively defined as follows:

y

0 fn=20
fib(n) = ¢ 1 fn=1
\ fib(n —2) + fib(n —1) ifn>?2

Example (compute fib(3)):

fib(3) = fib(1) + fib(2) = 1 + fib(0) + fib(1) =1+ 0+ 1 =2

12| eonardo Fibonacci (Leonardo di Pisa), 1200

Compute Fibonacci numbers (iteratively)

__start:

fib:

done:

result:

126

$a0 parameter n
$vO last Fibonacci number computed so far (and result)
$t0 second last Fibonacci number computed so far
$t1 temporary scratch register
.text
.globl __start
1i $a0, 1 # fib(n): parameter n
move $v0, $al # n < 2= fib(n) = n
blt $a0, 2, done
1i $t0, O # second last Fib’ number
13 $vo, 1 # last Fib’ number
add $t1, $t0, $vO # compute next Fib’ number in sequence
move $to, $vO # update second last
move $vo, $t1 # update last
sub $a0, $a0, 1 # more work to do?
bgt $a0, 1, fib # yes: iterate again
SwW $v0, result # no: store result, domne
.data

.word Ox11111111

127

MIPS: Booth’s algorithm

e Remember Booth's algorithm to multiply two's complement numbers

— Note: equivalent functionality 1s provided by MIPS instruction mult

START
R+ 0 . .
Ao — Register assignment:
Register Usage
=10 A =01 $a0 A
=00 $a1 C
=11 $vO R
R+~ R-C R+~ R+C $t0 [
$t1 A_1 (only bit 0 of $t1 used)
ASR R, A, A — Implementation quite straightforward, ASR
- of “connected registers’ R, A, A_; needs
No

=07 some care

__start:

booth:

caselO:

caseO1:
shift:

MIPS: Booth’s algorithm

.text
.globl

1i
1i

1i
1i
1i

and
sll
or

beq
beq
b
sub
b
add

and
and
sll
srl
or

sra

sub
bnez

$ao0,
$al,

$vO,
$t1,
$tO0,

$t2,
$t2,
$t2,

$t2,
$t2,
shift
$vO,
shift
$vO,

$t1,
$t2,
$t2,
$a0,
$ao0,
$vO,

$t0,$

_start

-5
7

0
0
32

$a0, 0x00000001
$t2, 1
$t2, $t1

2, caselO
1, caseO1

$vO, $ail
$v0, $ail

$a0, 0x00000001
$v0, 0x00000001
$t2, 31

$a0, 1

$a0, $t2

$vo, 1

t0, 1

$t0, booth

H H H= +H H H H H +H* H H H=

H H H=

parameter A
parameter C

R <-0

A(-1) <- 0

i <- n (32 bits)
$t2 <- A0

$t2 = AO,A(-1)
$t2 = 107

$t2 = 017

$t2 = 00 or $t2 = 11
R <-R-2C

R <-R +C

A(-1) <- AO

save RO

shift right A
A31 <- RO
arithmetic shift right R

i<-1-1
i = 07
result in $vO0,$a0

123

MIPS: Addressing modes

e A MIPS instruction like
1b $t0, memory

addresses a given, fixed address in memory.

e Commonly, however, programs need to access consecutive ranges of
memory addresses (e.g., to perform string processing)

Example (place string representation in the data segment):

.data

str: .asciiz "foobar" # null-terminated ASCII encoded string

Content of data segment at address str:

Address str+0 str+1 str4+2 str4+3 str+4 str+5 str+6
Value 102 111 111 08 97 114 0

129

130

MIPS: Addressing modes

e Assembler instructions available to place constant sequences of data
Into data segment:

.ascii s ASCI| encoded characters of string s

.asciiz s like .ascii, null-terminated

.word Wy, Wo, . .. 32-bit words wq, w, . ..

.half hl, h2, 16-bit halfwords hl, hz,

.byte by, by, . .. 8-bit bytes by, b», . ..

.float fi, f, ... 32-bit single precision floating point numbers fi, f>, . ..
.double di, do, . .. 64-bit double precision floating point numbers di, d>, . ..
.space n n zero bytes

e To consecutively access all characters (bytes, halfwords, words) in such a
sequence, the CPU needs to compute the next address to access

131

MIPS: Indirect addressing

e Indirect Addressing: address I1s held In a register

Example:
.Text
la $t0, str
1b $t1, ($t0) # access byte at address $t0 (’f’)
add $t0, $t0, 3
1b $t2, ($t0) # access byte at address $t0 + 3 (’b’)
.data
str: .asciiz "foobar"

° @ Note the difference between

1w $t0, a and la $t0, a

132

MIPS: Indexed addressing

e Actually, in keeping with the RISC philosophy, MIPS has only one general
memory addressing mode: indexed addressing

— In indexed addressing, addresses are of the form (16-bit constant c,
CPU register r)

c(r)

 r holds a 32-bit address to which the signed 16-bit constant c Is
added to form the final address

Example (repeated from last slide):

.text

la $t0, str

1b $t1, 0($t0) # access byte at address $t0 (’f’)

1b $t2, 3($t0) # access byte at address $t0 + 3 (’b?)
.data

str: .asciiz "foobar"

133

MIPS: Indexed addressing

e Example (copy a sequence of n bytes from address src to address dst):

.text

.globl _start

__start:
length n of byte sequence - 1

1i $to, 5
copy:
1b $t1, src($t0) # pseudo! (src: 32 bits wide)
sb $t1, dst($t0)
sub $t0, $tO, 1
bgez $t0, copy
.data
src: .byte 0x11, 0x22, 0x33, 0x44, 0xbb, 0x66
dst: .space 6

e Questions: which changes are necessary to turn this into a n word (n
halfword) copy routine?

MIPS: Optimized copy routine

134

e Copying byte sequences via 1b/sb is inefficient on von-Neumann machines

__start:

copy:

rest:

done:

SIrc:

dst:

.text
.globl

1i
la
la

and
srl
beqz
1w
SW
add

.data

.align 4

__start

$ao0,
$al,
$a2,

$t1,
$t0,
$t0,
$t2,
$t2,
$ai,
$a2,
$t0,
copy
$t1,
$t2,
$t2,
$ail,
$a2,
$t1,
rest

11 # length n of byte sequence
src # source address
dst # destination address

$a0, 0x03
$al, 2
rest
($al)
($a2)
$al, 4
$a2, 4
$t0, 1

done
($a1)
($a2)
$al, 1
$a2, 1
$t1, 1

.byte 0x00, Ox11, 0x22, 0x33, 0x44, 0xb5, 0x66, 0x77, 0x88, 0x99, OxAA

.align 4

.space 11

135

MIPS: Addressing modes (summary)

Example MIPS instruction(s) Remark [Address]

iImmediate andi $t0, $t0, 0x03 16-bit constant
embedded In
Instruction

IP relative beqz $t0, done signed 16-bit jump
offset o embedded In
Instruction
[IP 4+ 4 x o]

direct 1w $t0, 0x11223344 lui $at, 0x1122 [0x11223344]
lw $t0, 0x3344($at)

indirect 1w $t0, ($t1) lw $t0,0($t1) [$t1]

iIndexed 1w $t0,0x11223344($t1) 1ui $at,0x1122 [0x11223344 + $t1]
addu $at, $at, $t1
lw $t0, 0x3344($at)

136

SPIM: System calls

e The MIPS emulator SPIM provides a few services (system calls) which
would normally be provided by the underlying operating system

— Most importantly, these services provide basic console input/output
(1/O) functionality to read/write numbers and strings

Service Call code Arguments Result
print Integer 1 $a0: Integer
print null-term. string 4 $a0: string address
read integer 5 $vO0: integer
read string 8 $a0: buffer address, $al: length
exit 10
Remarks:

— Place system call code In $vO, then execute syscall

— System call read integer reads an entire line (including newline) and
ignores characters following the number

— The read string system call reads at most $a1 — 1 characters into the
buffer and terminates the input with a null byte

137

SPIM: System calls

e Example (read integer n from SPIM console, then print 42 x n on

console):
.text
.globl __start
__start:
1i $v0, 5 # read integer
syscall
mul $t0, $vO, 42 # compute and save result
1i $vo, 4 # print string
la $a0, the_result_is
syscall
1i $vo, 1 # print integer
move $a0, $tO
syscall
1i $v0, 10 # exit
syscall
.data

the_result_is:
.asciiz "The result is "

138

SPIM: System calls

e Example (read integer n, then print hexadecimal equivalent on console):

— ldea: groups of 4 bits correspond to one hexadecimal digit (0...F), use

value of group (0...15) as index into table of hexadecimal digits

.text
.globl
__start:
1i
syscall
move

11
hexify: and
srl
1b
sb
sub
bgez

1i
la
syscall
1i
syscall

.data
hex table:

the_result_is:
hex_digits:

__start

$vO,
$tO0,

$t1,
$t2,
$t0,
$t3,
$t3,
$t1,
$t1,

$vO,
$a0,

$vO,

5
$vO0

7

$t0, OxOF

$to, 4
hex_table($t2)
hex_digits($t1)
$t1, 1

hexify

+H HHHHHFHFH + =S

4
the_result_is

10 #

.ascii "0123456789ABCDEF"

.ascii

.asciiz "XXXXXXXX"

read integer n
save n

7 (+ 1) hex digits for 32 bits
extract least significant 4 bits
prepare for next digit

convert 4 bit group to hex digit
store hex digit

next digit

more digits?

print string

exit

"Hexadecimal wvalue: Ox"

139

Bubble sort

e Bubble sort is a simple sorting algorithm (with quadratic complexity: to
sort n items, bubble sort in general needs n? steps to complete)

— Input: array A of n items (numbers, strings, ...) and an ordering <,

e.qg., n=>5:
i Al0] Al1] A[2] A[3] Al4]
3 4 10 5 3

— Output: sorted array A, e.g.:
Al0] A[1l] A[2] A[3] Al4]
3 3 4 5 10

e Basic idea:

@ J + n—1 (index of last element in A)
@ If Alj] < Alj — 1], swap both elements
@ J<J—1 goto®@if; >0
@ Goto (7) If a swap occurred

140

Bubble sort (trace)
A[O] A[l] A[2] A[3] Al4]

©)
A[O] A[l] A[2] A[3 Al4]
10 @ < 5

A[O] A[l] A[2 A[3]
A[O] A[l] A[2 A[3]

4 @ < 10
A[2]
©)
A[2]

3 @« 4

A[l] A[2] A[3] A[4
4 10 5

A[1] Al2] A[3] A[4]
@ <3 4 10 5
@ Swap occured? (Yes, goto (D))

Al0] All] Al2] A[3] malE
O3 3 4 10 @

__start:

outer:

inner:

no_swap.

.text
.globl

1i

sub
bgez

bnez

11
syscall

.data

.word

MIPS: Bubble sort

__start

$a0, 10

$a0, $al, 2
$t0, $al, 8
$t1, O

$t2, A+4($t0)
$t3, A($t0)
$t2, $t3, no_swap
$t2, A($t0)
$t3, A+4($t0)
$t1, 1

$t0, $t0, 4
$t0, inner
$t1, outer
$vO0, 10

4,5,6,7,8,9,10,2,1,3

H H H H H H H H =S =S

H H HH=

parameter n
number of bytes in array A

$t0: j-1

no swap yet

$t2 <- A[j]

$t3 <- A[j-1]

A[j] <= A[j-1]7

A[j-1] <- $t2 \ move bubble
A[j] <- $t3 / $t2 upwards
swap occurred

next array element
more?

did we swap?

exit

array A (sorted in-place)

141

142

Procedures (sub-routines)

e [he solution to a complex programming problem Is almost always
assembled from simple program pieces (procedures) which constitute a

small building block of a larger solution

e Often, procedures provide some service which can then be requested by

the main program in many places

— Instead of copying and repeating the procedure code over and over,
(D the main program calls the procedure
(jumps to the procedure code),
@ the called procedure does its job before it returns control
(jumps back to the instruction just after the procedure call)
— The main program is often referred to as the caller, the procedure as

the callee

143

MIPS: Procedure example

e Example (procedure to compute the average of two parameters x, y):

— |nput: parameter x in $a0, parameter y In $al

$a0 + $ail
2

— Qutput: average of x, y in $vO ($v0 g
.text

procedure average (x,y)
dinput: x in $a0, y in $al
output: $vO
average:
add $vO, $a0, $ail # $v0 <- $al0 + $ail
sra $v0, $vO, 1 # $v0 <- $v0 / 2

J Yelale #<§E>Where to return to?

144

MIPS: Procedure call

e A typical main program (caller of average) might look like as follows:

.Text
1i $a0, $tO # set parameter x
1i $a1, 12 # set parameter y
J average # compute average
y @ move $t0, $vO # save result
1i $a0, $tO # set parameter x
1i $a1, $t1 # set parameter y
J average # compute average
save result

*2: move $t1, $vO

e After the first call, average needs to return to label %1, after the second
call the correct address to return to Is %2

145

MIPS: Procedure call and return

e MIPS instruction jal (jump and link) jumps to the given address a
(procedure entry point) and records the correct return address in

register $ra:

jal a $ra < IP+ 4
IP < a

e [he callee may then simply return to the correct address in the caller via

Instruction Effect

j $ra IP < $ra

— $ra is reserved MIPS CPU register $31; programs overwriting/abusing
$ra are likely to yield chaos

MIPS: Procedure call and return’’

.text

1i $a0, $tO # set parameter x

1i $a1, 12 # set parameter y

jal average # compute average ($ra = 1)
Y1i: move $t0, $vO # save result

1i $a0, $tO # set parameter x

1i $al, $t1 # set parameter y

jal average # compute average ($ra = %2)
*2: move $t1, $vO # save result

1i $v0o, 10 # exit program

syscall

procedure average (x,y)
dinput: x in $a0, y in $al
output: $vO

average:
add $v0, $a0, $al # $v0 <- $al0 + $a1l
sra $v0, $vO, 1 # $v0 <- $vO / 2
j $ra # return to caller

I3NB: The ¥ labels merely illustrate the effect of jal and do not appear in the real assembly file

146

147

Recursive algorithms/procedures

e Some algorithms solve a complex problem as follows:

(D Is the size of the problem such that we can trivially solve i1t?
Yes = Return the answer immediately

@ Try to reduce the size/complexity of the original problem

3) Invoke the algorithm on the reduced problem

e In step (3), the algorithm invokes itself to compute the answer; such
algorithms are known as recursive

e Recursion may also be used in MIPS assembly procedures, typically:

.Text
proc: ... # code for procedure proc

jal proc # recursive call

Binary search

e Binary search is a recursive algorithm that searches for a given value

(needle) in a sorted array of values

e General idea:

(D If the array is of size 1 only, compare needle against the array entry,

return result of comparison (true/false)
2@ Locate the middle array entry m; compare needle and m
®) — If needle = m return true
— If needle < m, call binary search on left half of array
— Otherwise, call binary search on right half of array

e NB: since the array Is sorted, we know for all entries a to the left of m
that a < m (for all entries b to the right of m: b > m)

1483

149

Binary search (example, needle = 35)

Al0] A[l] A[2] A[3] A[4] A[5] Al6] Al7] A8l A9

O 2 3 3 10 16 21 35 42 43 50

Al0] All] A[2] A[3] REIRIW A[5] Al6] Al7] A8 A9

Al5] Al6] A[7] A[8] A[9]
@3 8 10 16 21 35 42 43 50

> Al5] Al6] REll Al8] A[9]
2 3 8 10 16 21 35 42 43 50

A[5] Al6] A[7]
@ g 10 16 21 35 42 43 50

A5 BAIEE Al7]
@ g 10 16 21 35 42 43 50

A[5] Al6] A[7]
@ g 10 16 21 35 42 43 50

Binary search: efficiency

e Binary search Is very efficient: In each recursive call, the size of the

problem is cut in half

150

— Let the original array come with n entries; each recursive call halves the

problem size:

2 2 2

— Binary search Is guaranteed to end after s recursive calls when the array

size has been reduced to 1:

s
[n
):1 s 2oy

1

2

25

~

array size n [log, n|

10

100
1000
10000
100000
1000000

4
4
10
14
17
20

s =log, n

151

MIPS: Recursive procedures

e Note that the MIPS procedure call /return via jal a/j $ra does not
work for recursive procedures

e What is going wrong?
Using jal in callee overwrites register $ra which is later needed to return

to caller:

.text

main program

jal proc # invoke procedure ($ra = %1)
w1 :

procedure
proc:

jal proc # recursive call ($ra = %2)
2 :

j $ra # @ (will jump to %2, not 1)

152

MIPS: Save/restore $ra in recursive procedure

.text
main program

jal proc # invoke procedure ($ra = 1)
) @ :

procedure
proc: save $ra

jal proc # recursive call ($ra = %2)
2 :
restore $ra
j $ra # will jump to 1

@ NB: Each invocation of proc needs its own place to save
$ra—the save location will otherwise be overwritten in the recursive calll

MIPS: Saving registers on the stack
e Conventionally, procedures save registers on the stack if they need to
preserve register values

— A stack is an area of memory that may grow/shrink depending on the
actual space needed by a program

— CPU register $sp points just below the last object stored on the stack

— Pushing more items on the stack moves $sp and lets the stack grow

— Example (MIPS: push 32-bit word z on stack):
subu $sp, $sp, 4

sw z, 4($sp)

Ox7FFFFFFF : Ox7FFFFFFF :
$sp + 8 X $sp + 12 X
$sp + 4 y $sp + 8 y

$sp — $sp+4 z
: ; $sp —
0x10000000 : :

before 0x10000000
after

© 0 N O o & W N R

=
=

__start:

done:

proc:

return:

MIPS: Saving registers on the stack

.text
.globl

1i
jal

11
syscal

subu
SW

beqz
1i
jal

1w
addu

J

no

__start

$a0, 1 # (0)
proc

$vo, 10
1

$sp, $sp, 4
$ra, 4($sp) # (1),(2)

$a0, return
$a0, O
proc

$ra, 4($sp)
$sp, $sp, 4 # (3),(4)
$ra

.data segment

State of stack at time (¢):

@ Address Stack

Ox7FFFFFFF

$sp — 277

0x10000000

@) Address Stack
Ox7FFFFFFF :
$sp+ 4 done

$sp — 777

0x10000000

154

O N O o0k~ N

__start:

done:

proc:

return:

MIPS: Saving registers on the stack

.text
.globl

1i
jal

13i
syscal

subu
SW

beqz
1i
jal

1w
addu

J

no

__start

$a0l, 1
proc

(0)

$vo, 10
1

$sp, $sp, 4
$ra, 4($sp) # (1),(2)

$a0, return
$a0, O
proc

$ra, 4($sp)
$sp, $sp, 4
$ra

(3),(4)

.data segment

State of stack at time (¢):

@ Address Stack

Ox7FFFFFFF
$sp + 8 done
$sp+ 4 return

$sp — 777

0x10000000

©) Address Stack
Ox7FFFFFFF E
$sp+ 4 done
$sp —return
777

0x10000000

155

0O N O o~ W N R

__start:

done:

proc:

return:

MIPS: Saving registers on the stack

.text

.globl __start

1i $a0, 1 # (0)

jal proc

1i $vo, 10

syscall

subu $sp, $sp, 4

SW $ra, 4($sp) # (1),(2)
beqz $a0, return

1i $a0, O

jal proc

1w $ra, 4($sp)

addu $sp, $sp, 4 # (3),(4)
j $ra

no .data segment

State of stack at time (¢):

@ Address Stack

Ox7FFFFFFF

$sp — done
return
707

0x10000000

e NB: the memory pointed to by
$sp and below Is considered
garbage

156

157

MIPS: Recursive binary search

e Example (recursive binary search procedure, $ra saved on stack):

O© 0 N O o0 & W N R

N DN NNNR R R BB P R B R R
o A WO N O O 00 ~NO o B W NN B+ O

first:

last:

__start:

.data

sorted array of 32 bit words

.word 2, 3, 8, 10, 16, 21, 35, 42, 43, 50, 64, 69

.word 70, 77, 82, 83, 84, 90, 96, 99, 100, 105, 111, 120
address just after sorted array

.text

.globl _start

binary search in sorted array

dinput: search value (needle) in $a0

base address of array in $al

last address of array in $a2

output: address of needle in $vO if found,

0 in $v0 otherwise

1i $a0, 42 # needle value

la $a1, first # address of first array entry
la $a2, last - 4 # address of last array entry
jal binsearch # perform binary search

1i $v0, 10

syscall

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

158

MIPS: Recursive binary search (cont.)

binsearch:
subu
SW

subu
bnez

move
1w
beq
1i
b
search:
sra
sll
addu
1w
beq
blt

go_right:
addu
jal
b

go_left:
move
jal

return:
1w
addu

$sp, $sp, 4
$ra, 4($sp)

$t0, $a2, $al
$t0, search

$vO0, $al

$to, ($v0)

$a0, $t0, return
$v0, O

return

$t0, $tO, 3

$to, $to, 2

$vO, $al, $tO
$to, ($v0)

$a0, $t0, return
$a0, $t0, go_left

$al, $vO, 4
binsearch
return

$a2, $vO
binsearch
$ra, 4($sp)
$sp, $sp, 4
$ra

= H H H=H H HHH HHEHHFHAH HHEHHFH H H H R

allocate 4 bytes on stack
save return address on stack

$t0 <- size of array
if size > 0, continue search

address of only entry in array

load the entry

equal to needle value? yes => return
no => needle not in array

done, return

compute offset of middle entry m:
$t0 <- ($t0 / 8) * 4

compute address of middle entry m

$t0 <- middle entry m

m = needle? yes => return

needle less than m? yes =>

search continues left of m

search continues right of m
recursive call
done, return

search continues left of m
recursive call

recover return address from stack
release 4 bytes on stack

return to caller

