Floating-Point

9.1 Objectives

After completing this lab, you will:

. Understand Floating-Point Number RepresentatioRElZ54 Standard)

. Understand the MIPS Floating-Point Unit

. Write Programs using the MIPS Floating-Point Instiens

. Write functions that have floating-point parametansl return floating-point results

9.2 Floating-Point Number Representation

Floating-point numbers have the following repreagan:

S E = Exponent F = Fraction

The Sign bitSis zero (positive) or one (negative).

The Exponent fieldE is 8 bits for single-precision and 11 bits for diwiprecision. The exponent
field is biased. Th8iasis 127 for single-precision and 1023 for doublegpsion.

The Fraction fieldr is 23 bits for single-precision and 52 bits foubte-precision. Floating-point
numbers are normalized (except wheris zero). There is an implickt. (not stored) before the
fractionF. Therefore, the value of a normalized floatingap@iumber is:

Value = + (1.F), x 2 £~ 5@

The MARS simulator has a floating-point represeatattool that illustrates single-precision
floating-point numbers. Go t®ools = Floating Point Representation, and open the window,
shown in Figure 9.1.

Now use the tool to check the binary format andd&@mal value of floating-point numbers.
For example, the decimal value 010000001 10110100000000000000000 is 6.75.
Similarly, the 32-bit representation 62.7531 is1 10000000 ©1100000011001011001010.

9: Floating-Point Page 1

@] Floating Point Representation, Version 1.1 DS i
32-bit IEEE 754 Floating Point Representation
O O O O O O O O < Hexadecimal representation
‘z(‘ . ‘h\ < Each hex digit represents 4 bits
0 OOOOOOOO’ 00000000000000000000000 < Binary representation
sign exponent fraction
I) . :
0-127 < Binary-to-decimal conversion
0 =127
=al D = .00000000000000000000000 = 0.0
significand (denormalized - no *hidden bit’)
Instructions
Modify any value then press the Enter key to update all values
MIPS floating point Register of interest: |None v
: : Tool Control i = 5
Connect to MIPS Reset Close E

Figure 9.1: Floating-Point Representation tool sujgd by MARS

9.3 MIPS Floating-Point Registers

The floating-point unit (called coprocessor 1) I¥&sfloating-point registers. These registers are
numbered a$f 0, $f 1, ..., $f 31. Each register is 32 bits wide. Thus, each regisie hold one
single-precision floating-point number. How can wee these registers to store 64-bit double-
precision floating-point numbers? The answer i tha 32 single-precision registers are grouped
into 16 double-precision registers. The double4gres number is stored in an even-odd pair of
registers, but we only refer to the even-numbeeggister. For example, when we store a double-
precision number i8f 0, it is actually stored in registe®$ 0 and$f 1.

In addition, there are 8 condition flags, numbeiretn O to 7. These condition flags are used by
floating-point compare and branch instructions.skhare shown in Figure 9.2.

9: Floating-Point

Registers | Coproc1 [Coproc 0
Name | Float | Double
5£0 [0x00000000| 0x0000000000000000
$£1 0x00000000
5£2 [0x00000000) 0x0000000000000000
5£3 [0x00000000|
514 [0x00000000| 0x0000000000000000
$£5 0x00000000
356 [0x00000000)| 0x0000000000000000
$£7 . 0x00000000)
sfe ‘ 0x00000000| 0x0000000000000000
$£9 [0x00000000)
$£10 [0x00000000) 0x0000000000000000
5£11 | 0x00000000)|
5£12 [0x00000000) 0x0000000000000000
5£13 [0x00000000|
5£14 | 0x00000000) 0x0000000000000000
5£15 [0x00000000
5116 ‘ 0x00000000) 0x0000000000000000
$£17 [0x00000000)
sf1e | 0x00000000) 0x0000000000000000
$£19 0x00000000
$£20 [0x00000000| 0x0000000000000000
5£21 [0x00000000)
$£22 0x00000000 0x0000000000000000
$£23 0x00000000
5£24 | 0x00000000) 0x0000000000000000
5£25 [0x00000000)
$£26 [0x00000000| 0x0000000000000000
$£27 [0x00000000)
s£28 [0x00000000) 0x0000000000000000
5£29 [0x00000000|
$£30 [0x00000000) 0x0000000000000000
5£31 , 0x00000000
Condition Flags

L]o L1 L2 L3
[]4 L5 L]6 L7

Figure 9.2: MIPS Floating-Point Registers and CbodiFlags

9.4 MIPS Floating-Point Instructions

The FPU supports several instructions includingatflog-point load and store, floating-point
arithmetic operations, floating-point data movemiastructions, convert, and branch instructions.
We start this section with the floating-point loaald store instructions. These instructions load int
or store a floating-point register. However, these uhe same base-displacement addressing mode
used with integer instructions. Notice that theebaddress register is an integer (not a floating-
point) register.

Instruction Example Meaning

lwcl or 1.s lwcl $f1,0($sp) | Load a word from memory to a single-precisjon
floating-point register$f1 = MEM[$sp]

ldcl or 1.d ldcl $f2,8(%$t1l) | Load a double word from memory to a double-
precision register$f2 = MEM[$t1+8]

9: Floating-Point

Instruction Example Meaning
swcl or s.s swcl $f5,4($t2) | Store a single-precision floating-point register| in
memory:MEM[$t2+4] = $f5
sdcl or s.d sdcl $f6,16($t3) | Store a double-precision floating-point register in

memory:MEM[$t3+16] = $f6

The floating-point arithmetic instructions are didt next. The.s extension is used for single-
precision arithmetic instructions, while thd is used for double-precision instructions.

Instruction Example Meaning

add.s add.s $fo0,$f2,$f4 $fo = $f2 + $f4 (single-precision)
add.d add.d $fo,$f2,$f4 $f0 = $f2 + $f4 (double-precision)
sub.s sub.s $f0,$f2,%$f4 $f0 = $f2 - $f4 (single-precision)
sub.d sub.d $f0,$f2,%$f4 $f0 = $f2 - $f4 (double-precision)
mul.s mul.s $f0,$f2,%$f4 $f0 = $f2 x $f4 (single-precision)
mul.d mul.d $f0,$f2,%$f4 $f0 = $f2 x $f4 (double-precision)
div.s div.s $f0,$f2,$f4 $f0 = $f2 / $f4 (single-precision)
div.d div.d $fo,$f2,$f4 $f0 = $f2 / $f4 (double-precision)
sqrt.s sqrt.s $f0, $f2 Square root (single-precision)
sqrt.d sqrt.d $fo, $f2 Square root (double-precision)
abs.s abs.s $fo, $f2 Absolute value (single-precision)
abs.d abs.d $fo, $f2 Absolute value (double-precision)
neg.s neg.s $fo, $f2 Negative value (single-precision)
neg.d neg.d $fo, $f2 Negative value (double-precision)

The data movement instructions move data betweeeargkepurpose and floating-point registers, or
between floating-point registers.

Instruction Example Meaning

mfcl mfcl $to, $f2 Move data from a floating-point register to a gae
purpose register.

mtcl mfcl $to, $f2 Move data from a general-purpose register tp a
floating-point register.

mov.s mov.s $f0, $f1 Move single-precision data between two floating-
point registers.

mov.d mov.d $fo, $f2 Move double-precision data between two floatipg-
point registers (move even-odd pair of registers).

9: Floating-Point

The convert instructions convert the format of datdloating-point registers. Three data formats

are supported: s = single-precision float,d = double-precision, ands = integer word.

Instruction Example Meaning

cvt.s.w cvt.s.w $f0,$f2 $f0 = convert$f2 from word to single-precision
cvt.s.d cvt.s.d $fo,$f2 $£0 = convert$f2 from double to single-precision
cvt.d.w cvt.d.w $f0,%$f2 $f0 = convert$f2 from word to double-precision
cvt.d.s cvt.d.s $f0,%$f2 $£0 = convert$f2 from single to double-precision
cvt.w.s cvt.w.s $f0,%$f2 $f0 = convert$f2 from single-precision to word
cvt.w.d cvt.w.d $f0,%$f2 $f0 = convert$f2 from double-precision to word
ceil.w.s ceil.w.s $f0,$f2 | $f0 = Integer ceiling of single-precision float $2
ceil.w.d ceil.w.d $f0,$f2 | $f0 = Integer ceiling of double-precision float$2
floor.w.s | floor.w.s $f0,$f2 | $f0 = Integer floor of single-precision float $f2
floor.w.d | floor.w.d $f0,$f2 | $f0 = Integer floor of double-precision float $f2
trunc.w.s |trunc.w.s $f0,$f2 | $f0 = Truncate single-precision float §f2
trunc.w.d | trunc.w.d $f0,$f2 | $f0 = Truncate double-precision float$f2

The floating-point compare instructions comparatilog-point registers for equality, less than, and
less than or equal. The FP compare instructiontheetondition flag® to 7 to true (1) or false(0).

Instruction Example Meaning

c.eq.s c.eq.s $f2,%$f3 if ($f2 == $f3) set flago to true else false
c.eq.d c.eq.s 3,%$f4,$f6 | Compare equal double-precision. Result in 8ag
c.lt.s c.eq.s 4,%$f5,$f8 |if ($f5 < $F8) set flaga to true else false
c.1lt.d c.lt.d 7,$f4,$f6 | Compare less-than double. Result in ffag
c.le.s c.le.s $f10,%$f11 |if ($f10 <= $f11) set flago to true else false
c.le.d c.le.d $f14,$f16 | Compare less or equal double. Result in éag

9: Floating-Point

The floating-point branch instructionbdlt andbc1f) branch to the target address based on the
value of the specified condition flag (true or &ls

Instruction Example Meaning

bclt bclt label Branch tolabel if condition flage is true
bclt bcit 1, label Branch tolabel if condition flagl is true
bclf bclf label Branch tolabel if condition flage is false
bclf bclf 4, label Branch tolabel if condition flag4 is false

9.5 System Call Services for Floating-Point Numbers

The MARS tool provides the followinglyscall service numbers (passed$iwd) to print and read
single-precision and double-precision floating-paionmbers:

Service | $vO Arguments Result
Print Float 2 | $f12 = float to print
Print Double | 3 | $f12 = double to print
Read Float 6 Float is returned i$fo
Read Double| 7 Double is returned iifo

9.6 MIPS Floating-Point Register Usage Convention

Compilers follow the MIPS register usage conventidmen translating functions and procedures
into MIPS assembly-language code. The followindetadthnows the MIPS software convention for
floating-point registers. Not following the MIPSfsgare usage convention can result in serious
bugs when passing parameters, getting resultssiog vegisters across function calls.

Registers Usage

$fo - $f3 Floating-point procedure results

$f4 - $f11 | Temporary floating-point registers, NOT preservemsas procedure calls

$f12 - $f15 | Floating-point parameters, NOT preserved acrosseoiare calls. Additiona
floating-point parameters should be pushed ontideks

$f16 - $f19 | More temporary registers, NOT preserved acrossegiure calls.

$f20 - $f31 | Saved floating-point registers. Should be preseagedss procedure calls.

9: Floating-Point

9.7 In-Lab Tasks

1. Convert by hand the numbet23456789 into its 32-bit single-precision binary represd¢iota,
and then use the floating-point representation fmelsented in Section 9.2 to verify your
answer. Show your work for a full mark.

2. Convert by hand the floating-point humbkr 10010100 10011000001100000000000
(shown in binary) into its corresponding decimalluea and then use the floating-point
representation tool presented in Section 9.2 tdywgour answer. Show your work for a full
mark.

3. Trace the following program by hand to deterntlmevalues of registegsfo thru $£9. Notice
that arrayl andarray2 have the same elements, but in a different odemment on the
sums ofarrayl andarray2 elements computed in registé4 and$f9, respectively. Now
use the MARS tool to trace the execution of thegmm and verify your results. What
conclusion can be made from this exercise?

.data

arrayl: .float 5.6e+20, -5.6e+20, 1.2

array2: .float 1.2, 5.6e+20, -5.6e+20
.text

la $t9, arrayl

lwcl $f0, 0($t0)

lwcl $f1, 4(%$t0)

lwcl $f2, 8($t9)

add.s $f3, $fo, $f1

add.s $f4, $f2, $f3

la $t1, array2

lwcl $f5, O(%$t1)

lwcl $f6, 4(%$t1)

lwcl $f7, 8(%$t1)

add.s $f8, $f5, $f6

add.s $f9, $f7, $f8

4. Write an interactive program that inputs angetesum and an integecount, computes, and
displays theaverage = (float) sum / (float) count as a single-precision floating-
point number. Hint: use the proper convert instarcto convertsum andcount from integer
word into single-precision float.

5. Write an interactive program that inputs theftoent of a quadratic equation, computes, and
displays the roots of the quadratic equation. Aflut, computation, and output should be done
using double-precision floating-point instructicarsd registers. The program should handle the
case of complex roots and displays the resultsguhpp

9: Floating-Point

6. Square Root Calculation: Newton’s iterative roetlsan be used to approximate the square root
of a numbemx. Let the initialguess bel. Then each neguess can be computed as follows:

guess = ((x/guess) + guess) / 2;

Write a function calledquare_root that receives a double-precision paramgtezomputes,
and returns the approximated value of the squareafx. Write a loop that repeats 20 times
and computes 2f8uess values, then returns the fingliess after 20 iterations. Use the MIPS
floating-point register convention (Section 9.6) ggass the parameter and to return the
function result. All computation should be done ngsidouble-precision floating-point
instructions and registers. Compare the resulhefsgrt.d instruction against the result of
your square_root function. What is the error in absolute value?

9.8 Bonus Problems

7. The sine function can be approximated by thiefohg series:

- _m (=D" o1 o
ElﬂI—ﬂZﬂmI _I_E—FE_"'&'TH’HI

Write a function that computes the sine of a patanx. Use the MIPS floating-point register
convention (Section 9.6) to pass the parameteand to return the function result. All
computation should be done using double-precisioatihg-point instructions and registers.
Limit your computation to the first 20 terms of theries.

8. Converting a string into a floating-point number

Write a function to convert a string, such 8s13.232e-5" into a double-precision floating-
point number. The address of the string shoulddssed in registe$a@. The function should
return the double-precision floating-point numbergife. Conversion should terminate if the
end of the string is reached (NULL byte), or anali/ character is encountered, such as a
space, comma, etc.

9: Floating-Point

