MIPS Functions and the
Stack Segment

7.1 Obijectives

After completing this lab, you will:

. Write MIPS functions, pass parameters, and retesalts

. Understand the stack segment, allocate, and fagk ftames
. Understand the MIPS register usage convention

. Write recursive functions in MIPS

7.2 MIPS Functions

A function (or a procedure) is a tool that prograensnuse to structure programs, to make them
easier to understand, and to allow the functiorddecto be reused. A function is a block of
instructions that can be called and used when redjait several different points in the program.

The function that initiates the call to another don is known as thealler. The function that
receives and executes the call is known aséllee. When thecallee function finishes execution,
control is transferred back to thaller function.

A function can receive parameters and return restlite parameters and results act as an interface
between a function and the rest of the program.

To execute a function, the program must follow ¢heteps:
1. Thecaller must put the parameters in a place wheredhee function can access them
2. Transfer control to theallee function
3. Execute theallee function
4. Thecallee function must put the results in a place wherectler can access them
5. Return control to thealler (point of origin) next to where the call was made

Registers are the fastest place to pass paranagténseturn results. The MIPS architecture follows
the following software conventions for passing paggers and returning results:

* $a@-%$a3: four argument registers in which to pass pararaete
* $vO-$vi: two value registers in which to return functi@sults
* $ra: one return address register to return back tacater

7: MIPS Functions and the Stack Segment Page 1

The jal (jump-and-link) instruction initiates the call & function and thejr (jump register)
instruction returns control back to the caller.

To call a function, use thgal instruction as follows:
jal label

The jal instruction saves the return address in regftarand jumps to the first instruction in the
function afterlabel. The return address is the address of the netxtigi®n that appears after the
jal instruction in the caller function.

To return from a function, use thje instruction as follows:
jr $ra

The jr instruction jumps to the address storeéma. It modifies the program countec register
according to the value stored in regisea.

An example of a C function that checks whetheraatterch is a lowercase letter or not is shown
in Figure 7.1. The function is translated into MIBS&embly language as shown to the right. The
function islower assumes that the parametéris passed in regist§a®. The function result is
passed in registéve.

int islower(char ch) { islower:
if (ch>='a' && ch<='z") blt $a@, 'a', else # branch if $a0@ < 'a’
bgt $a0@, 'z', else # branch if $a@ > 'z’

return 1;
1li $vo, 1 # $v0 = 1
else .
jr $ra # return to caller
return O; else:
} 1i $ve, o # $vo0 = 0
jr $ra # return to caller

Figure 7.1: Example of a C function and its tratisfainto MIPS assembly code

To call the functionislower, the caller must first copy the charaatérinto registei$a® and then
make the function call. This is shown in Figure:7.2

move $a0@, ... # move into register $a@ the character ch
jal islower # call function islower
return here after executing function islower

Figure 7.2: Using thgal instruction in MIPS to initiate a function call

Remember that thgal instruction saves the return address in regtarand thatjr jumps into
the return address in regisfara to achieve a function return.

The MIPS architecture provides three instructiamsupport functions and methods in high-level
programming languages. Thil (jump-and-link) instruction is used to call furmis whose
addresses are constants known at compile timeewgjalr (jJump-and-link register) instruction

7: MIPS Functions and the Stack Segment

is used to call methods whose addresses are \@si&bbwn at runtime. Thgr (jump register)
instruction can be used to return from functionscahd methods. These instructions, their meaning,
and format are summarized in Figure 7.3.

Instruction | Meaning | Format

jal label $ra=PC+4, jump | op®=3 imm?26

jr Rs PC =Rs opf=0| rsd® 0 0 0 8
jalr Rd, Rs | Rd=PC+4, PC=Rs | op®=0 | rs® 0 rd> | O 9

Figure 7.3: Thgjal, jr, andjalr instructions in MIPS

7.3 The Stack Segment and the Stack Pointer Register

Every program has three segments when it is loadednemory by the operating system. There is
the text segment where the machine language code is storedd#he segment where space is
allocated for constants and variables, and slaek segment that provides an area that can be
allocated and freed by functions. The programmer ri@ control over where these segments are
located in memory. The stack segment can be usddngyions for passing many parameters, for
allocating space for local variables, and for sg\and preserving registers across calls. Withaait th
stack segment in memory, it would be impossiblertite recursive functions, or pure functions that
have no side effects.

When a program is loaded into memory, the operasiygiem initializes the stack pointgsp
(register$29) to the base address of the stack segment. Tlok segment grows downwards
towards lower memory addresses as shown in Figdre 7

OXTFFFEFFf
Stack Segment Stack grows
\l, Downwards
Heap Area
0x10040000 Data Segment
0x10000000 Static Area
Text Segment
0x00400000
0x00000000 Reserved

Figure 7.4: The text, data, and stack segmentgpobgram

When a program starts execution, the operatingesyshitializes the stack pointésp register
with a valid address to point to thep of the stack. For example, when executing a MIPS program
under the MARS tool, the initial value of regis$ap is @x7fffeffc.

A function can allocate space on the stack forrgavegisters and for its local variables. The space
that a function allocates on the stack is callethek frame (called also aactivation record).

7: MIPS Functions and the Stack Segment

To allocate a stack frame nfbytes, decrement the stack pointembst the start of a function:
addiu $sp, $sp, -n # n must be a constant number of bytes
To free a stack frame afbytes, increment the stack pointerrbjust before a function return:
addiu $sp, $sp, n # n must be a constant number of bytes

Figure 7.5 illustrates the stack allocation befoaiting a function, during the execution of functjo
and after returning from a function call. The staknter registe$sp points to the top of the
caller’s stack frame before making a call to fumctf. The$sp register points to the stack frame of
function f during its execution. Thesp register points back to the top of the calleracktframe
after returning from functiorf. The stack frame can be used to pass argumemtdunction, to
save registers across function calls, and to @kospace for local variables declared inside the
function. In particular, registe$ra should be saved before a function can call andinection,
because thgal instruction modifies théra register. Arguments are typically passed in regsst
$a0 thru $a3. However, if a function has more than four arguteghen the additional arguments
should be passed on the stack.

High address High address High address
Caller’s Caller’s Caller’s
Stack Frame Stack Frame Stack Frame
Ssp —> Ssp —>
Arguments
Saved Regs Stack
(if any) > Frame of
Local vars || Function f
if an
$sp —) (if any)
Low address Low address Low address
a) Before calling f b) While executing f c) After returning from f

Figure 7.5: Stack allocation (a) before (b) whikeeuting, and (c) after returning from functibn

An example of a functiof that allocates a stack frame is shown in Figuée The functionf is
non-leaf, because it calls functionead, reverse, andprint. Therefore, the return address of
functionf (register$ra) must be saved on the stack. In addition, thekdtame of functionf must
allocate space for the local array (10 integer eleisi= 40 bytes), as shown in Figure 7.6.

Example function Stack Frame

void f() { saved $ra = 4 bytes
int array[10];
read(array, 10);
reverse(array, 10);
print(array, 10);
}

Figure 7.6: Example of a functidhand its corresponding stack frame

7: MIPS Functions and the Stack Segment

int array[10]
(49 bytes)

The translation of functiofi into MIPS assembly code is shown in Figure 7./hdion f allocates

a stack frame of 44 bytes. The stack is accessad tlee same load and store instructions used to
access the data segment. The base address ragiftep. A displacement is used to access
different elements on the stack.

f: addiu $sp, $sp, -44
Sw $ra, 40($sp)
move $a@, $sp
1i $al, 10
jal read
move $a@, $sp
1i $al, 10
jal reverse
move $a@, $sp
1i $al, 10
jal print
1w $ra, 40($sp)
addiu $sp, $sp, 44
jr $ra

allocate stack frame = 44 bytes
save $ra on the stack

$a0 = address of array on the stack
$al = 10

call function read

$a0 = address of array on the stack
$al = 10

call function reverse

$a0 = address of array on the stack
$al = 10

call function print

load $ra from the stack

Free stack frame = 44 bytes

return to caller

H OH O OH H O OH H N H K N H K

Figure 7.7: Translation of functiohinto MIPS assembly code

Some MIPS software uses the frame pointer regddftpr(register$30) to point to the base address
of a stack frame. This might be needed if the sfamkter$sp changes during the execution of a
function, or arrays and objects are allocated dycallg on the stack. The frame pointgfp
register provides a stable address for a stackefraithin a function.

7.4 MIPS Register Usage

A convention regarding the usage of registers es®ary because software is written by many
programmers. In this case, each programmer must kraw registers are supposed to be used,
such that his piece of the software does not atnflith pieces written by other programmers.

Since programming is done today using high-levegpmming languages, you may ask why such
a register convention is still needed. Well, ithe compiler who needs to know about it. This is
because a program can be created from differenepithat are compiled separately. To compile a
function, the compiler must know which registers ased to pass parameters, which registers are
used to return results, and which registers mugirbserved across function calls. These rules for
register usage are also known dsinction call conventions.

The MIPS hardware does not prevent you from igmptirese rules, from not preserving registers,
from using any register in passing parameters atdmning results. However, if you ignore these
rules, you will easily run into trouble and havétwsare bugs that are difficult to eliminate.

7: MIPS Functions and the Stack Segment

The following table presents the MIPS register esagnvention:

Register Register .
Register Usage
Name Number
$zero $0 Always zero. Cannot be modified
$at $1 Reserved for assembler use
$vo - $vi $2 - $3 Function results are returned$m@ and$vi

$a0 - %a3 $4 - $7 Function arguments are passe@a® thru$a3

$to - $t7 $8 - $15 | Temporary registers. Not preserved across funciadis
$s0 - $s7 $16 - $23 | Saved registers. Must be preserved across funcélis

$t8 - $t9 $24 - $25 | Additional temporary registers. Not preserved
$ko - $ki1 $26 - $27 | Reserved for OS kernel usage

$gp $28 Global pointer to global data. Must be preserved
$sp $29 Stack pointer. Must be preserved

$fp $30 Frame pointer. Must be preserved

$ra $31 Return address register. Must be preserved

Figure 7.8: MIPS register usage convention

A function is free to modify the value registée0-$v1, the argument registe$m@-$a3, and the
temporary registerg$to-$t7 and$t8-$t9 without saving their old values. However, it sltbabt
modify register$s0-$s7, $gp, $sp, fp, andra except after saving their old values in memory
on the stack. A function must restore the valueegisters$s0-$s7, $gp, $sp, fp, andra by
loading their old values from the stack, just befogturning back to the caller. Registgsp and
$fp must be preserved if a new stack frame is allacéte a function. Registera must be
preserved if a function makes a call to anothection, because thgal instruction modifies the
return address registgra.

7.5 Recursive Functions

A recursive function is a function that calls ifsdfor example, the recursive functidfact
(factorial) and its translation into MIPS assemtibgle are shown in Figure 7.9.(h<2) then there
is no need to allocate a stack frame. Howeve(nif=2) then the factorial function allocates a
stack frame of 8 bytes to save regisga® and$ra.

Registerga® (argument) is saved on the stack because its value is claingéne recursive call,
and because it is needed after returning from eébarsive call. Registefra is saved on the stack
because its value is changed by the recursivéjall fact).

7: MIPS Functions and the Stack Segment

int fact(int n) {
if (n<2) return 1;

else return (n * fact(n-1));

}

fact:
bge $a0@, 2, else # branch if (n >= 2) to else
1i $vo, 1 # $v0 = 1
jr %$ra # return to caller

else:

addi $sp, $sp, -8
sw $a0, 0(%$sp)
sw $ra, 4(%$sp)
addi $a0, $a0, -1
jal fact

lw $a0, 0(%$sp)
lw $ra, 4(%$sp)
mul $vo, $a0, $vo
addi $sp, $sp, 8

jr %$ra

allocate a stack frame of 8 bytes
save the argument n

save the return address

argument $a@ = n-1

call fact(n-1)

restore $a@ = n

restore return address

$v0 = n * fact(n-1)

free stack frame

H OH H H OH O H OH OH OH OH

return to the caller

Figure 7.9: A recursive function and its translatioto MIPS assembly language code

7.6 In-Lab Tasks

1. The functionislower, shown in Figure 7.1, tests whether a charadheis lowercase or not.
Write themain function of a program that reads a charactercalls the functionislower,
and then prints a message to indicate wheathas a lowercase character or not.

2. Write a function that reads an array rofintegers. The functiomead must receive two
arguments$a0 = address of the array, afdl = numbem of elements to read.

3. Write a function that prints an array ofintegers. The functioprint must receive two
arguments$a@ = address of the array, afidl = numbem of elements to print.

4. Write a function that reverses the elementsrohiaay ofn integers. The functiomeverse
must receive two argumenta® = address of the array, afidl = numbem of elements.

5. Suppose we rewrite functign(Figures 7.6) to have an integer parameterhe localarray is

now declared to hauweintegers (rather that®). This means that the size of the stack frame size

7: MIPS Functions and the Stack Segment

of function f will depend om. Rewrite the functiorf in MIPS assembly language. Hint: you
may use th&fp register (in addition t§sp) to implement the functiof.
void f(int n) {
int array[n];
read(array, n);
reverse(array, n);
print(array, n);
}

6. The functionf(n) implemented in problem 5 calls the functiaread, reverse, andprint
implemented in problems 2 to 4. Write a completegpam that includes theain function as
well as functionsf, read, reverse, andprint. Themain function should call functiorf
twice as:f(5) andf(8).

7. The recursive functiofiib(n) computes the™ element in the Fibonacci sequence. Implement
this function in MIPS. Write aain function to callfib.
int fib(int n) {
if (n < 2) return n;
return (fib(n-1) + fib(n-2));

}
7.7 Bonus Question

8. The functiomuick_sort sorts amrray recursively. Translate this function into MIPS eod
Write a main function to call and test this funatio

void quick_sort(int array[], int low, int high) {
int i = low, j = high; // low and high index
int pivot = array[(low+high)/2]; // pivot = middle value
while (i <= j) {
while (array[i] < pivot) i++;
while (array[j] > pivot) j--;

if (1 <= J) {
int temp=array[i];
array[i]=array[j]; // swap array[i]
array[j]=temp; // with array[j]
i++;
i--;
}
}
if (low < j) quick_sort(array, low, j); // Recursive call 1

if (i < high) quick_sort(array, i, high); // Recursive call 2
}

7: MIPS Functions and the Stack Segment

