Integer Multiplication
and Division

6.1 Obijectives

After completing this lab, you will:

* Understand binary multiplication and division
* Understand the MIPS multiply and divide instrucion
* Write MIPS programs that use integer multiplicataord division

6.2 Binary Multiplication

Sequential binary multiplication is a simple bubvel form of multiplication. It is performed using
addition and shift operations as illustrated inurg6.1. The multiplication of two 32-bit integassa
64-bit product stored in two registers: Hl and LO.

| HI = 0, LO=Multiplier |

Figure 6.1: Sequential Binary Multiplication Algorithm

Register Hl is initialized with the value 0, and Li®©loaded with the value of the multiplier. The
sequential algorithm is repeated 32 times for daithof the multiplier. Finally, the product is
computed in two registers HI and LO.

6: Integer Multiplication and Division

Figure 6.2 shows a simple sequential binary mudtigbr unsigned integers. It uses a 32-bit ALU, a
register for storing the multiplicand, a shift r&tgr (HI and LO) for storing the final product, and
simple controlInstead of shifting the multiplicand to the lefietproduct is shifted to the right. It has
the same net effect and computes the same rd$dt.control examines each bit of the multiplier
LOJO]. If a bit of the multiplier is 1, then an atldn is done: HI = HI + Multiplicand. Then the HI
and LO registers are shifted to the right and theycbit is inserted. This is repeats 32 times to
compute the 64-bit product in HI and LO.

Multiplicand

32 bits

32 bits

LO[O]

Figure 6.2: Sequential Binary Multiplier

Signed multiplication can also be performed usimg $ame sequential binary multiplier, but with
minor modification. When adding (HI + Multiplicanthe proper sign bit of the result is computed,
instead of the carry bit. When shifting the HI dr@ registers to the right, the sign-bit is inserted
the left of the product. Additions are used for finst 31 steps. However, the last step should use
subtraction (rather than addition), if the signddithe multiplier is negative.

Sequential binary multiplication is slow becauseeduires one cycle for each bit of the multiplier.
Faster binary multiplication can be done in hardyas shown in Figure 6.3. The cost of the binary
multiplier increases because it uses many addetgad of just one used as in Figure 6.2.

Mplier31 « Mcand Mplier30 * Mcand ~ Mplier29 » Mcand Mplier28 « Mcand Mplier3 « Mcand Mplier2 « Mcand Mplier1 « Mcand Mplier0 « Mcand
i i i i l i \
A N hd N
32 bits 32 bits e 32 bits 32 bits
A N
32 bits 32 bits
1 bit + 1 bit—+ 1bit— 1 bit—+
g
32 bits
Product63 Product62 T Product47..16 . Product1 Product0

Figure 6.3: Faster Integer Multiplier

6: Integer Multiplication and Division

6.3 Binary Division

Sequential binary division can be performed usindt nd subtract operations. Binary division
produces a quotient and a remainder. It also weesdgisters HI and LO. The quotient is computed
in the LO register and the remainder is computethéenHI register. Hl is initialized with zero and
LO is initialized with the dividend. At each itei@t step, registers HI and LO are shifted left by 1
bit. The difference: (HI — Divisor) is computed tliis difference i$ 0, the Remainder (HI register)
is set equal to the difference and the least saamf bit of the quotient (LO register) is set torhe
sequential binary division algorithm is repeatedifs, as shown in Figure 6.4.

Start

v

1. Shift (HI, LO) Left
Difference = HI — Divisor

20 <
Difference?

2. Hl = Remainder = Difference
Set least significant bit of LO

1}

3204 Repetition? > 2

Yes

Figure 6.4: Binary Division Algorithm

A simple but slow sequential binary divider is simoiw Figure 5.5. It uses a 32-bit ALU that does
subtraction. It also uses HI and LO registers,\d@ddr register, and simple control logic to shéft|
the HI and LO registers and set the least-sigmtitat of LO. The control logic repeats 32 times to
compute each bit of the quotient in LO. The firehainder will be in the HI register.

Divisor
l ‘ 32 bits
hAV4
32-bit ALU /

Difference

Hi LO
32 bits | 32 bits

setIsb

Figure 6.5: Sequential Binary Divider

6: Integer Multiplication and Division

6.4 MIPS Integer Multiply and Divide Instructions

Multiplication and division generate results thes &rger than 32 bits. Multiplication produces a
64-bit product while division produces a 32-bit teot and a 32-bit remainder. The MIPS
architecture provides two special 32-bit registeet are the target for integer multiply and divide
instructions. The source operands come from thergépurpose register file. However, the results
are written into HI and LO registeror multiplication, the HI and LO registers form64-bit
product. For division, HI stores the 32-bit rema&ndvhile LO stores the 32-bit quotient.

MIPS defines two multiply instructionsmult for signed multiplication andwultu for unsigned
multiplication. Both multiply instructions produ@e64-bit product without overflow. There is also
a thirdmul instruction that computes the same 64-bit prodscamult instruction in HI and LO
registers. However, theul instruction also copies the LO register into degibn registeRd. The
mul instruction is useful when the product is smadl aan fit in a 32-bit destination register.

Instruction Meaning Note
mult Rs, Rt [HI, LO] = Rs x Rt Signed multiplication
multu Rs, Rt [HI, LO] = Rs x Rt Unsigned multiplication

mul Rd, Rs, Rt | [HI, LO] Rs x Rt; Rd = LO | Rd = Lower 32-bit of the product

Table 6.1: MIPS Integer Multiply Instructions

In addition, MIPS defines two integer divide instiions: div for signed division andlivu for
unsigned division. The quotient of the integer simh is saved in the LO register, while the
remainder is saved in the HI register as showrainld 6.2.

Instruction Meaning Note

div Rs, Rt LO = Rs / Rt, HI = Rs % Rt Signed division

divu Rs, Rt LO = Rs / Rt, HI = Rs % Rt Unsigned division

Table6.2: MIPS Integer Divide Instructions

If the divisor in registeRt is zero, then the MIPS divide instructions do cminpute any result in
the HI and LO registers. Division by zero is igrbr@and no exception is produced. The MIPS
programmer must ensure that the divisor is non-séren using the integer divide instruction.

Special instructions are used to move data betwleemiHl and LO registers and general-purpose
registers. These are listed in Table 6.3.

6: Integer Multiplication and Division

Instruction Meaning Instruction Meaning

mfhi Rd Rd = HI mthi Rs HI = Rs

mflo Rd Rd = LO mtlo Rs LO = Rs

Table 6.3: Move Instructions for the HI and LO registers

Applications of Integer Multiply and Divide Instructions

Raising an integer numbgrto a powen (x"), may be computed using successive multiplications
The following code uses integer multiplication ngplement the power function. Regist$e® and
$al are used to stopeandn, while $v@ contains the result.

1i $a0, 7 # number x
1i $al, 5 # number n
1i $vo, 1 # $v0 = 1
pow:
mul $vo, $vO, $a0 # $vO = $vO, $a0
addiu $al, $al, -1 # decrement n
bnez $al, pow # loop if (n != @)

The greatest common divisor can be computed asaisl|

gcd(a, 9) = a
gcd(a, b) = gcd(b, a % b) where % is the remainder operator
For example,

gcd(30, 18)
gcd(18, 12)
gcd(12, 6)

gcd(18, 30%18)
gcd(12, 18%12)
gcd(6, 12%6)

gcd(6, ©) = 6

The following MIPS loop computes tiged of two numbers stored in registéa® and$al. The
final result is computed in registga®.

1i $a0, 30 # number a
1i $al, 18 # number b
ged:
div $a0, $al # HI = remainder, LO = quotient
move $a@, $al # $a0@ = number b
mfhi $al # $al = a % b (remainder)

bnez $al, gcd # loop if (b != @)

6: Integer Multiplication and Division

A string is an array of bytes stored in memory. &xamplestr is defined as a string of digits in
the data segment. Thasciiz directive is used to define an ASCII string stomreanemory and
terminated with a NULL byte.

.data
str: .asciiz "512943687"

The string of digits can be read from memory andveoted into a number. Thikb (load byte)
instruction can read each character of a stringnfroemory into a register. The following MIPS
loop converts the above strisgr into an integer computed in regisguo:

.text
main:
la $to, str # load address of str into $to
1i $vo, 0 # Initialize $vO = O
1i $vi, 10 # Initialize $vl1 = 10
1b $t1, (%$to) # load byte: $t1 = Memory($t0)
str2int:

addiu $t1, $t1, -48

mul $vo, $vo, $vi

addu $ve, $vo, $t1

addiu $to, $to, 1

1b $t1, ($t0)

bnez $tl1, str2int
done:

convert character to a number

$vO = $vO * 10

$vO = $vO + digit

point to next character in memory
load byte: $t1 = Memory($t0)

loop back if not NULL character

H OH O O OB H

$vO = integer result

An unsigned integer can be converted to a stringuzgessive divisions @. The remainder is a
digit betweer® and9. The remainder digits are computed backwardsirsggat the least significant
digit. Each remainder is then converted to an ASGHracter and stored in memory in a string. For
example, consider converting the inteG218 into a string. This can be done as follows:

5128 / 10 8 =» Convert 8 into character 'S8’

512, 5128 % 10

512 / 10 = 51, 512 % 10 = 2 = Convert 2 into character '2°
51 /10 = 5, 51 % 10 = 1 = Convert 1 into character '1°
5/ 10 = 0, 5% 10 =5 = Convert 5 into character 'O’

Stop when the quotient is zero

The following MIPS code converts an unsigned integered in registe$a® into a string stored in
the data segment in memory. The string is initealizvith 10 space characters. The string l@s
characters only because a 32-bit unsigned integehave at mogo digits.

6: Integer Multiplication and Division

.data

str: .asciiz " " # str = 10 space characters
.text
main:
1i $a0, 5128 # $a0 = unsigned integer to convert
la $vO, str # load address of str into $vo
addiu $vo, $vo, 11 # $vO = pointer at end of str
1i $al, 10 # Initialize $al = 10
int2str:
divu $a0, %al divide $a@ by 10
mflo $a0 $a0 = quotient
mfhi $te $t0 = remainder (0 to 9)

addiu $to, $te, 48
addiu $vo, $vo, -1
sb $to, ($vo)

bnez $a@, int2str

convert digit into a character
point to previous space character
store byte: Memory($ve) = $t0

loop back if quotient is not zero

H OH H H H H =

done:

$vO = pointer to string in memory

6.6 In-Lab Tasks

1. Write MIPS code to perform the following integeultiplications. What is the value of the LO
and Hl registers?

a) 98765 x 54321 using thamultu instruction
b) -98765 x -54321 using thamult instruction

2. Write MIPS code to perform the following integhvisions. What is the value of the LO and HI
registers?

a) 98765 / 54321 using thedivu instruction
b) -98765 / -54321 using thediv instruction

3. Factorial Calculation: Using theul instruction, write a MIPS program that computes th
factorial of a numben input by the user, and display the result on ttreen. Run your code
and record the maximum 32-bit factorial value et be computed without errors.

4. The string-to-integer program presented in $add.5 converts a string of decimal digits to an
unsigned integer using successive multiplicatiopsl® and additions. It is also possible to
convert a string of digits in any radix system toiateger, using successive multiplications by
the radix value and additions. Rewrite the stringrateger program asking the user to input a

6: Integer Multiplication and Division

radix value betweeR and10 and a string of digits in the specified radix syst For example,

if the radix value i8 then the string can only have octal digit chanacfeom '@' to '7".
Convert the string of digit characters into an gned integer and display the value of the
unsigned integer.

5. The integer-to-string program presented in $acl.5 converts an unsigned integer to string
format using successive division b9 and storing the remainder digit characters irriagst It
is also possible to convert the unsigned integeany radix using successive divisions by the
radix value. Rewrite the integer-to-string prograsking the user to input an unsigned integer
and a radix value betweenand10. Do the radix conversion and then print the stridigke
sure that the string has sufficient space chasotspecially when converting to radix

6. Fraction computation: Using successive integettiplications and divisions, write a MIPS
program that divides an integerby another integey that are read as input. The result of the
division should be in the fornu.b, wherea is the integer part anbl is the fractional part.
Compute the fractiob with 8 digits after the decimal point. Display the resulthe forma.b.

6: Integer Multiplication and Division

