Introduction to MIPS
Assembly Programming

2.1 Objectives

After completing this lab, you will:
* Learn about the MIPS assembly language
* Write simple MIPS programs

* Use system calls for simple input and output

2.2 MIPS Assembly Language Program Template

A MIPS assembly language program template is shiovangure 2.1.

Title:

Author:

Date:

Description:

Input:

Output:

Hi#HHEHEHEHEHHHEHE Data segment #H##HHHHHGHGHGHFHIEHTHHE
.data

HitHHH Y Code segment #H#HHHHHHHHHHHHHHHHHHE

.text

.globl main

main: # main function entry

1i $vo, 10

syscall # system call to exit program

Figure 2.1: MIPS Assembly Language Program Template

2: Introduction to MIPS Assembly Programming

There are three types of statements that can lkinsessembly language, where each statement
appears on a separate line:

1. Assembler directives: These provide information to the assembler whig@slating a program.
Directives are used to define segments and allosptce for variables in memory. An
assembler directive always starts with a dot. AdgbMIPS assembly language program uses
the following directives:

.data Defines the data segment of the program, contaithm@grogram’s variables.
.text Defines the code segment of the program, contaithie@gnstructions.
.globl Defines a symbol as global that can be referenwed bther files.

2. Executable Instructions: These generate machine code for the processexeioute at runtime.
Instructions tell the processor what to do.

3. Pseudo-Instructions and Macros. Translated by the assembler into real instrustiofhese
simplify the programmer task.

In addition there are comments. Comments are veppitant for programmers, but ignored by the
assembler. A comment begins with thesymbol and terminates at the end of the line. Centm
can appear at the beginning of a line, or afteinatruction. They explain the program purpose,
when it was written, revised, and by whom. Theylaixpthe data and registers used in the program,
input, output, the instruction sequence, and aligors used.

2.3 The Edit-Assemble-Link-Run Cycle

Before you can run a MIPS program, you must contleet assembly language code into an
executable form. This involves two steps:

1. Assemble: translate the MIPS assembly language code itioary object file. This is done by
the assembler. If there is more than one assembly languagetfieny each should be assembled
separately.

2. Link: combine all the object files together (if thesemore than one) as well as with libraries.
This is done by thénker. The linker checks if there are any calls to fiord in libraries. The
result is arexecutablefile.

Figure 2.2 summarizes tHlit-Assemble-Link-Run cycle of the program development process. If a
program is written in assembly language, #issembler detects anywyntax errors and will report
them to the programmer. Therefore, you shouldyawit program and assemble it again if there any
syntax errors.

It is typical that the first executable versionymiur program to have somentime errors. These
errors are not detected by the assembler but osten you are running your program. For
example, your program might compute erroneous t®esdlherefore, you shouldebug your
program to identify the errors at runtime. You can your program with various inputs and under
different conditions to verify that it is workingpectly. You can use the slow execution mode in

2: Introduction to MIPS Assembly Programming

MARS, the single-step feature, or breakpoints tenidy the sources of the errors. Single-step
execution is a standard and essential featuredabaigger. It allows inspecting the effect of each
instruction on CPU registers and main memory.

(Start)

y

Edit & Save <

Y

Y

Assemble & Link Yes

|

No

Run

Runtime Error?

Figure 2.2: The Edit-Assemble-Link-Run Cycle

2.4 MIPS Instructions, Registers, Format and Syntax

All MIPS instructions are 32-bit wide and occupybytes in memory. The address of a MIPS
instruction in memory is always a multiple of 4 &yt There are three basic MIPS instruction
formats: Register (R-Type) format, Immediate (I-&ygormat, and Jump (or J-Type) format as
shown in Figure 2.3.

All instructions have a 6-bit opcode that definee format and sometimes the operation of an
instruction. The R-type format has two source tegidields: Rs and Rt, and one destination
register fieldRd. All register fields are 5-bit long and addressgéeral-purpose registers. Téee
field is used as thghift amount for shift instructions and thfunct field defines the ALU function
for R-type instructions.

The I-type format has two register fields onRs andRt, whereRs is always a source register,
while Rt can be a destination register or a second sowpending on the opcode. The 16-bit

2: Introduction to MIPS Assembly Programming

immediate field is used as a constant in arithmiestructions, or as an offset in load, store, and
branch instructions.

The J-type format has no register field. The 26hinediate field is used as an address in jump
and function call instructions.

R-Type Format

op° Rs’ Rt Rd’ sa’ funct®

I-Type Format

Op° Rs’ Rt Immediate™®

J-Type Format

op° Immediate?®

Figure 2.3: MIPS Instruction Formats

The MIPS architecture defines 32 general-purpogisters, numbered froi$® to $31. The$ sign

is used to refer to a register. To simplify softev@levelopment, the assembler can also refer to
registers by name as shown in Table 2.1. The adesentbnverts a register name to its
corresponding number.

Register Name Number Register Usage by Software

$zero $0 Always zero, forced by hardware

$at $1 Assembler Temporary register, reserved for asseambk
$vo - $vi $2 - $3 Results of a function

$a0 - $a3 $4 - $7 Arguments of a function

$to - $t7 $8 - $15 | Registers for storing temporary values

$s0 - $s7 $16 - $23 | Registers that should be saved across functioa call
$t8 - $t9 $24 - $25 | Registers for storing more temporary values

$ko - $ki1 $26 - $27 | Registers reserved for the OS kernel use

$gp $28 Global Pointer register that points to global data

$sp $29 Stack Pointer register that points to top of stack

$fp $30 Frame Pointer register that points to stack frame

$ra $31 Return Address register used to return from a fanatall

Table 2.1: General-Purpose Registers and their Usage

2: Introduction to MIPS Assembly Programming

The general assembly language syntax of a MIP8uictgdn is:
[1label:] mnemonic [operands] [# comment]

The 1abel is optional. It marks the memory address of thetruction. It must have a colon. In
addition, alabel can be used for referring to the address of akbgiin memory.

Themnemonic specifies the operatioadd, sub, etc.

The operands specify the data required by the instruction. &#int instructions have different
number of operands. Operands can be registers, ijemadables, or constants. Most arithmetic
and logical instructions have three operands.

An example of a MIPS instruction is shown belowisTéxample uses theddiu to increment the
$t0 reqister:

L1: addiu $te, $te, 1 # increment $to

To be able to write programs, a basic set of iettyns is needed. Only few instructions are desdrib
in the following tables. Table 2.2 lists the baarthmetic instructions and Table 2.3 lists basic
control instructions.

Instruction Meaning
add Rd, Rs, Rt Rd = Rs + Rt. Overflow causes an exception.
sub Rd, Rs, Rt Rd = Rs - Rt. Overflow causes an exception.
addi Rt, Rs, Imm |Rt = Rs + Imm (16-bit constant). Overflow causes an exceptiopn.
1i Rt, Imm Rt = Imm (pseudo-instruction).
la Rt, var Rt = address of var (pseudo-instruction).
move Rd, Rs Rd = Rs (pseudo-instruction).

Table 2.2: Basic Arithmetic Instructions.

Instruction Meaning

beq Rs, Rt, label |if (Rs == Rt) branch talabel.

bne Rs, Rt, label |if (Rs != Rt) branch talabel.

j 1label Jump tolabel.

Table 2.3: Basic Control Instructions.

2: Introduction to MIPS Assembly Programming

2.5 System Calls

Programs do input and output using system callsa@eal-system, the operating system provides
system call services to application programs. THE3Marchitecture provides a specsaiscall
instruction that generates a system call exceptich is handled by the operating system.

System calls are operating-system specific. Eadratipg system provides its own set of system
calls. Because MARS is a simulator, there is noaipg system involved. The MARS simulator
handles thesyscall exception and provides system services to prograatde 2.1 shows a small
set of services provided by MARS for doing basiz. I/

Before using thayscall instruction, you should load the service numbgr iegistei$ve, and load
the arguments, if any, into regist$@0, $al, etc. After issuing theyscall instruction, you should
retrieve return values, if any, from regisga®.

Service Code in SvO | Arguments Result
Print Integer 1 $a0 = integer to print
Print String 4 $a0 = address of null-terminated string
Read Integer 5 $vo = integer read
Read String g $a0 = addr'ess of input buffer
$al = maximum characters to read
Exit program 10 Terminates program
Print char 11 $a0 = character to print
Read char 12 $vo = character read

Table 2.4: Basic System Call Services Provided by MARS.

Now, we are ready to write a MIPS assembly langyeiggram. A simple program that asks the user
to enter an integer value and then displays theeval this integer is shown in Figure 2.4.

Five system calls are used. The first system caltpstringstrl. The second system call reads an
input integer. The third system call prists2. The fourth system call prints the integer vaheg tvas
input by the user. The fifth system call exits pinegram.

2: Introduction to MIPS Assembly Programming

| Edit Execute
[syscall.asm \
1 .data .
2 Sstril: .asciiz
3 str2: .asciiz
4
S .globl main
6 .text
7 main:
8 1i $v0, 4
9 la $a0, str1 #
10 syscall
11 11 $v0, S
12 syscall
13 move $s0, $vO
14 11 $v0, 4
15 1a $a0, str2
16 syscall # print str? strina
17 11 $v0, 1 % corvice R ek e B
18 move $a0, $sO = . + i
19 syscall
20 11 $v0, 10
21 syscall |
< | Dl

Figure 2.4: MIPS Program that uses System Calls

2.6 In-Lab Tasks

1. Modify the program shown in Figure 2.4. Ask theruseenter an integer value, and then print
the result of doubling that number. Use 8 instruction.

2. Modify again the program shown in Figure 2.4. ABk user whether he wants to repeat the
program:"\nRepeat [y/n]? ". Use service code 12 to read a character and rdmechp
instruction to repeat the main function if the uisgut is charactety*.

3. Write a MIPS program that asks the user to inpsitniaime and then printélello ", followed
by the name entered by the user.

4. Write a MIPS program that executes the statensenia + b) — (c + 101), where, b, andc are
user provided integer inputs, ast computed and printed as an output. Answerdhewing:

a. Suppose the user enters 5,b = 10, anct = -30, what is the expected valuesaf
b. Which instruction in your program computed the eaddis and which register is used?
c. What is the address of this instruction in memory?

d. Put a breakpoint at this instruction and write\thkie of the register used for computsig
decimal and hexadecimal.

5. Write a MIPS program that inputs two integer valuBse program should outpegual if the
two integers are equal. Otherwise, it should outmtt equal. Use the branch instruction to
check for equality.

2: Introduction to MIPS Assembly Programming

