13 Pipelined CPU Design
with Data Forwarding

13.1 Objectives

After completing this lab, you will:

. Learn how to design a pipelined CPU

. Learn the different types of pipeline hazards

. Implement Forwarding to handle data hazards

. Verify the correct operation of your pipelined CEEkign

13.2 Pipeline Data Path

The single-cycle data path design can be pipelimi&da 5-stage pipeline by introducing registers at
the end of each stage as shown in Figure 13.1.

IF | ID | EX | MEM | WB
| | i 1
T "] ! !
| ! !
a g - i
el / = Mext ! !
UL S PC | i |
% Emrict: £ i ALU result 32 !
L / =1 |immis \]‘iam i i
Instruction @ < a2 =] s £l
Memory E Rs 5|_ RA E G il >ﬁ — g Maony 0 %
Instruction e = o 1 : = e 2 i e
- ERt-,E',RBE (@"1 Ul & inta: aid payate 1 @ |
© Addrass 2|rg BusB e (m 0 / a2 T =
-‘ == (=100 ci Dam_in
» N BusW I 32 o I
.-32 o] -
(T 3
—v@ g ?:L =] e _?-.‘L-l

clik
Figure 13.1: Pipelined Data Path.

It should be observed that the destination regratenber is also pipelined by saving it across stage
as the writing of the content of the register is@lat stage 5. In addition, the incremented value o
PC is also pipelined across stage 2 and 3 asi#ad by the Next PC block.

13: Pipelined CPU Design with Data Forwarding

13.3 Pipelined Control

The control signals are generated by the contrtlinrthe second stage (i.e. ID state). In order to
pipeline the control unit, we need to save all tdomtrol signals needed by the later stages in
registers. For example, the control signals Ext@plUSrc, ALUCtrl, J, Beq, Bne, MemRead,
MemWrite, Memtoreg and RegWrite need to be savdbarregister separating stage 2 and stage 3.
However, only the control signals MemRead, MemWiilemtoreg and RegWrite are saved in the
register separating stages 3 and 4 as the remasomigol signals are used in stage 3 and are not
needed in stages 4 and 5. The pipelined data pdthantrol unit CPU is shown in Figure 13.2.

gL

Immz28a

AL result 32

NQ

IIHmINPCEI
BE [
$3

lmm 16 zero
PSS - —
e Instruction | | 32 Data —
= @ < " =]
P Re § = BusA e A
l MAGOH Sl = lpa & + >L e i - -
Instruction | =] = = Addrass i =
N 2| Rt 5§ 2 E 1 L < 22
2 -+ RE @ — Date out | 1| |2
B frie Rd E E—"EE e [v5] o -~ a3 = e g
e [= — BV o7 F L7 o Datz_in Lo
al. Busiy i 3z I
T &
3z =1 [«]
mall x| "]
1) " i .r-l
L L Lt |
clk . |

- S Mam -";"“':E'_ fg'.ern
Wit Cp S Ci Bee Resd Winle foReg

A
e
a
i
I
A
fin B
=
.
&
o
m
i

"'\-\Jf'_ fung
i
|
']
Ll g
<

g‘u
|

]

I

EX

Lel ZALU }
\Eonlrgl/‘m

| WEM

Figure 13.2: Pipeline Data Path and Control logic.

13.4 Pipeline Hazards

Hazards are situations that would cause incorpestigion if next instruction were launched during
its designated clock cycle. Hazards can be claskifito three main types:

1. Structural hazards

<- Caused by resource contention

13: Pipelined CPU Design with Data Forwarding

<> Using same resource by two instructions duringsdrae cycle

2. Data hazards

<> An instruction may compute a result needed by mesttuction
<~ Hardware can detect dependencies between instnsctio

3. Control hazards

< Caused by instructions that change control flovarflches/jumps)
< Delays in changing the flow of control

Hazards complicate pipeline control and limit periance. Dependency between instructions
causes a data hazard. An example of a data hazRebd After Write — RAW Hazard. An example
of a RAW hazard is given below. Given two instrans| andJ, wherel comes beford.

Instructiond should read an operand after it is written by

|: add $s1, $s2, $s3 # $sliswritten
J: sub $4, $s1, $s3 # $slisread
The RAW Hazard occurs whelreads the operand befdrerites it.

Figure 13.3 shows a sample MIPS program with sé®aV hazards. The result efibinstruction

is needed by thadd or, and & sw instructions. The instructiorsdd & or will read old value of
$s2 from reg file as the value of $s has not bgmhated in the reg file yet. During CC5, $s2 is
written at the end of the cycle, and thus the @ti® is read. Thus, from this example we can see
that any dependency between an instruction andhthe three following instructions will cause a
RAW hazard.

Time (cycles) ————€C1—+CC2—CC3—+CCA—CC5—+CC6—+CCT —CC8—»

T valueof $s2 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20
e ' 1 — I~ [l ! | | |

S cub $<2, $11, $43 |w| E Reg_::@-: : L |

< ! ! ! ! !

Q . -y} | |

S add $<4, $<2. $15 | ﬂ IM HiFReg(]! | |

3 B q

E or $s6, $13, $s2 | | - IM i HReg| |

E | | T - '

€ and $s7, $14, $<2 i i i i iIDMReg
e | | | L L

a i i i i i

| sw $18,10($s2) i i | i :iDM

Figure 13.3: Example of RAW hazard.

13: Pipelined CPU Design with Data Forwarding

13.5 Handling RAW Data Hazards

One way of handling RAW data hazards is to sta&lglpeline until the required destination register
is updated in the reg file. This requires freezthg execution of instructions that have such
dependency for three clock cycles to all the rég o be updated. Figure 13.4 illustrates an
example of that. Due to the RAW dependency betvikeradd and sub instructions, fetching the
operands of the add instruction has to wait uetjister $s2 of the sub instruction is updated. This
requires stalling the pipeline for three clock egclfrom CC3 to CC5. Stall cycles delay the

execution of the add instruction & fetching of theeinstruction. The add instruction cannot read
$s2 until beginning of CC6. The add instruction aéms in the Instruction register until CC6 and

the PC register is not modified until the beginnaigCC6.

However, instead of stalling the pipeline and wagtilock cycles, RAW hazards can be handled by
observing that the needed data is available inobtiee stages 3 to 5 and can be used by forwarding
it to stage 2 instead of waiting until the datamstten to the reg file. This idea is illustrateal i
Figure 13.5.

CC6—+—CCT+CCB—+-CL9—

—l— Time (in cycles) —— CC1+CC2+CC3+CC4--CCB—+
c 20 20 20 20

value of $s2 10 | 10 '

or $s6, $13, $s2

5 |

o i

é sub $s2, $11, $13 IM H Reg H Reg i

k=] “ :

§ add $s4, $s2, $15 H IM ﬂ Reg ; Reg
= i

+ Ustall ¢

& |

l

Figure 13.4: Pipeline stall due to RAW hazard.

The add instruction takes the content of $s2 from ALU output. The or instruction takes the
content of $s2 from the output of the DM stage. &hd instruction takes the content of $s2 from
the input of the reg file stage 5 and the conté$sé from the ALU output at stage 2.

To implement forwarding, two multiplexers are ad@edhe inputs of the A & B registers and data
from ALU stage, MEM stage, and WB stage is fed bimckhese multiplexers as shown in Figure
13.6. Two signals ForwardA and ForwardB controWarding as shown in Table 13.1.

13: Pipelined CPU Design with Data Forwarding

Time (cycles) ——— - CC1+-CC2+ CCH-CC6+-CCT+-CC8—

T value of $s2 i 10 i 10 i 20 i 20 i 20
E sub $s2, $t1, $13 IM H Reg:i | |

G . ! o

é add $s4, $<2, $15 i H IV -i Reg i i

3 [L 1 1

L% or $s6,$13, $s2 i i i- ~|EZ DM E-Reg i

: A S A D =i

‘gn and $s7, $s6, $s2 | | | E- IM HifReglilALU DM H Reg
o i T R — i

| sw $18,10($s2) | | | | iHIM rifiRegl mﬂ DM

Figure 13.5: Example of data forwarding.

It should be observed that current instruction fadecoded is in the Decode stage, the previous
instruction is in the Execute stage, the secondiqus instruction is in the Memory stage and the

third previous instruction in the Write Back stagéus, RAW data hazards detection conditions

and the generation of the forwarding control sigrean be done as follows:

If ((Rs '=0) and (Rs == Rd2) and (EX.RegWrite)) orwardA< 1
Else if ((Rs !'=0) and (Rs == Rd3) and (MEM.Reg\&/)jt ForwardA< 2
Else if ((Rs !'=0) and (Rs == Rd4) and (WB.RegWjite ForwardA< 3
Else ForwardA- O
If ((Rt!'=0) and (Rt == Rd2) and (EX.RegWrite)) ofwardB< 1
Else if ((Rt!=0) and (Rt == Rd3) and (MEM.RegVeit ForwardB& 2
Else if ((Rt!=0) and (Rt == Rd4) and (WB.RegW))te ForwardB< 3
Else ForwardB&- O

The hazard detection and forwarding unit is shawRigure 13.7.

13: Pipelined CPU Design with Data Forwarding

Table 13.1: Data forwarding signals.

Signal Explanation

ForwardA = (First ALU operand comes from register file = VahfgRSs)

ForwardA = 1| Forward result of previous instruction to A (fronbA stage)

ForwardA = 2 Forward result of ¥ previous instruction to A (from MEM stage)

ForwardA = 3 Forward result of '8 previous instruction to A (from WB stage

ForwardB = Q Second ALU operand comes from register file = ValtigRt)

ForwardB = 1| Forward result of previous instruction to B (fron.\4 stage)

ForwardB = 2 Forward result of % previous instruction to B (from MEM stage)

ForwardB = 3 Forward result of 8 previous instruction to B (from WB stage

ForwardA
Imm26 % Imm18
= 3z 32 ALY result
L] .
Rs = = = L
= BusA
= RA | 2 [P g o |Address _
=| et s | 3 Em @ Data o0 |s
= RE % BusE =y o — Memory -
: : 0 . 2| 8
2 3z Diata_out] 1
= | Rw X I ! | . >0 -
- BusW | 2 [y ’ Data_in
1—32 Y 4 — T
@ 9 » 9 * 3
\lj I ® o« nc'l
Rd L L | L |
1

clk |

ForwardB

Figure 13.6: Implementation of data forwarding.

13: Pipelined CPU Design with Data Forwarding

Immz28 =]
,4'._ % 32 - 32 ALY result
N g p =l =,
Rs:m T BusAm - T 74 Address e
E = | 3 o Data 0
a *RB % BusH p — = ‘E
g E 1 o] Memory a2 £
= . a2 3z Dita ot] 1 =
E Rd | R/ o g | | mr o | ==
. Busw I_ | 2 [T | ’ Dista_in I -
[y s 3) || ALUCH b 2
i’a & g = ﬂ + ;
QJ o [o
- =T S T
clk -
RegDst i - i == 1 e
" ForerardB Forerard&
/ ra I '_
7 + Hazard Detect [
and Fonward
fumc J—
_____j{ \Hﬁ Regiiints RegiVrite Ragiifrite
Cp Main __,——-“'_ 2 ~—
—= EALU >l =
= R
b "=

'\\Cfntml T— .

Figure 13.7: Hazard detection and forwarding unit.

13.6 In-Lab Tasks

1. Implement RAW hazard detection and the forwarding in your pipelined CPU design.

2. Add pipeline registers to your data path CPU design

3. Add pipeline registers to pipeline the controlnsity in your CPU design.

4. Verify the correctness of your pipelined CPU dadiy executing the following instruction

sequence:

ori
addi
xor
andi
addi
add

sub

$s1,
$s2,
$s3,
$s4,
$s5,
$s6,
$s7,

$0, 1
$0, 2
$s3, $s3
$0, $0
$s1, 5
$s1, $s2
$s1, $s2

How many clock cycles your pipelined CPU takesxeceite this program?

13: Pipelined CPU Design with Data Forwarding

5. Add the two multiplexers needed to implement datavarding.

6. Implement the forwarding unit and add it to yoipghned CPU.

7. Verify the correctness of your pipelined CPU desigaluding data forwarding unit by
executing the following instruction sequence:

ori $s1, $0, 1
addi $s2, $0, 2
ori $s3, $0, 3
sub $s4, $s3, $sl
add $s5, $s4, $s2
or $s6, $s4 $s5
and $s7, $s3, $s4
sw $s7, 10(%$s4)

13: Pipelined CPU Design with Data Forwarding

