1 1 Data Path Main
Components Design

11.1 Objectives

After completing this lab, you will:

* Design a 32x 32 bit register file
» Design a 32 bit arithmetic and logic unit (ALU)

11.2 Register File

The register file consists of 32 x 32-bit registansl has the following interface as shown in Figure
11.1:

<> BusA and BusB: 32-bit output busses for readinggsters

< BusW: 32-bit input bus for writing a register whieagWrite is 1

< RA selects register to be read on BusA

< RB selects register to be read on BusB

< RW selects the register to be written

Thus, two registers are read and one register itbewrin a single cycle. Writing happens on the

rising edge of the clock. During read operatiom, tagister file bahaves as a combinational block
and once the RA or RB have valid data, the conbérthe read register will appear on BusA or

BusB after a certain access time.

Register
A File o..pmp
AN .
ih- RS BusB -‘*
—=> Clock

BusW
Fegrite t =

Figure 11.1: 32x32-bit register file interface.

11. Data Path Main Components Design

The 32 x 32-bit register file design is given igiie 11.2. It should be observed that registera) is
constant. Each of BusA and BusB is connected tarid&ate buffers. Each tr-state buffer is
connected to one of the 32 registers. The tri-diatkers enable signals are driven by the outplits o
two 5x32 decoders, one with Ra input and the oth#r Rb input, to select which register puts its
value on the corresponding bus. The enable sigidlse 31 registers (register 1 to 31) are anded
with the output of a 5x32 decoder and RegWrite alighhe 5x32 decoder input is connected to Rw
to select which register should be written.

RA 45 RB 5
|De-::-::-der| 0" ‘Decoder| "o"
32 L Tri-state
"3 32 buffer
RO s N)"*:)E R1 [T
not used
i :
. 1 ¥ 32
RWIS || F r2 1
—+ 8. B [
5 | @ N
D L]
32
29 32 - B 1S A
HeE
L, R31 | 32
RegWrite | — BusB
Clock

Figure 11.2: 32x32-bit register file design.

11.3 Arithmetic and Logic Unit (ALU) Design

The Arithmetic and Logic Unit (ALU) is the unit wieemost instructions are executed. It mainly
performs arithmetic, logic and shift operationseTALU will have four main blocks: Arithmetic,
Comparator, Logic, and Shifter blocks as illustdate Figure 11.3.

The arithmetic block is composed of a 32-bit adtlat can perform 32-bit addition and subtraction.
Its internal implementation can be designed usimgp@le carry adder composed of 32 full-adder
blocks. The inputs A and B are two 32- bit integand the output F is A+B or A-B. The arithmetic
block has a control signal, ADD/SUB, to determinbether the operation to be performed is
addition or subtraction. If this signal is 0O, thadar will perform addition, otherwise it will perio
subtraction. Note that subtraction is performeagd's complement representation as A-B= A + B’
+ 1. B' is computed by the XOR gates in the arittieni@lock. The adder also generates Carry-Out
(Cout) and Overflow signal that can be used to fi@storrectness of the obtained result and for

11. Data Path Main Components Design

comparison purposes for unsigned and signed opagatNote that Overflow can be generated by
XORIing the last two carry-out signals (i.e. thergaouts of bits 30 and 31).

& |None =00 2 :
== SLL = 01 7 2 1 SLT: ALU does a fSUB
©® @) SRL=10 “p| and check the sign
o 7 :
O [SRA=11 shiftAmount | Shifter and overflow
A Isb 5
A 32 Co ALU Result
- 32
L5 B 32
&% [ADD=0 ——
£8 lsuB=1
<O
; ; ALU
Logic Unit Selection
Shift =00
5 & | AND=00 SLT = 01
S% | OR=01 Arith = 10
&8 |NOR=10 , Logic = 11
O (XOR =11 7

Figure 11.3: Arithmetic and Logic Unit (ALU) design

This block is mainly used for comparing signed andigned numbers. For the MIPS CPU, we just
need to compare if a number is less than anotherbau for implementing the set on less than
instructions (SLT, SLTU, SLTI, SLTIU). For unsignedmparison of two numbers A and B, we

need to perform a subtraction operation, A- B, tnah check whether we have a Carry-Out (Cout)
or not. If Carry-Out=0, this means that there wé®aow when B is subtracted from A and thus A
< B. However, if Carry-Out=1 then this implies thia¢re was no borrow and hence /.

Similarly, for comparing signed numbers A and B, pegform the subtraction operation A — B and
then we check both the Sign of the result and therf@w signal. The Sign of the result is the most
significant bit of the result (i.e. but 31). If tisegn value is not equal to the Overflow valuenth&

< B, otherwise, A> B. This can be done by XORing the Sign and therfloxe signals. If the result

is 1, this means that A < B.

11. Data Path Main Components Design

The logical block performs the logic operations,[ANDR, NOR, and XOR, for implementing the
MIPS logic instructions. Functions in this bloclegrerformed using the basic logic gates. Logic
gates can have up to 32 inputs in Logisim, and e@guit may have up to 32 bits. In our case, the
gates are implemented as gates having 2 inputs,leatng 32 bits. Figure 11.4 shows a model of a
2-input 8-bit AND gate in Logisim.

500000000 . . .l il

o D-F'D'D'UD'D'UD-:
I L

DO000000

Figure 11.4: A 2-input 8-bit AND Block.

The shifter block is used to implement MIPS shifitructions (SLL, SRL, SRA). A shift operation
takes a binary number and shifts it left or rightadospecified number of bits. There are two main
kinds of shift operations: logical,and arithmetic.
* Logical shift: whenever bits are shifted to the afright, O's are injected.
» Arithmetic shift: when bits are shifted to the)dits are injected, however when bits are
shifted to the right the sign bit (i.e., most sfgrant bit) is injected.

The functionality of logical and arithmetic shisinuctions is illustrated in Figure 11.5.

sll -« 32-bit register .
shift-out MSB + +— «1— ++— «- Lo +— +1 +—+1—+— shift-in 0
srl
shift-in0 —+»—+>—1+—1 1+ Lo —* -+ —+ - —— shift-out LSB
sra
shift-in sign-bit D——- T e -+ 1+ - 1 = shift-out LSB

Figure 11.5: Functionality of logical and arithneeshift instructions.

Logisim provides blocks for performing shift opeoats that can be used in the design of the Shifter
block.

11. Data Path Main Components Design

Multiplexor Block

A 32-bit 4x1 Multiplexor is used to select the auttfrom either the Arithmetic block, the
Comparator block, the Logical block or the Shifsack. This is done through a 2-bit ALU
selection signal.

Zero Flag Detector Block

The role of this block is to set the zero-flagtbitL whenever the output of any operation is etual
zero. This could easily be designed using a NOR gathe output.

11.4 In-Lab Tasks

You are required to design a 32-bit MIPS-like pssm with 31 general-purpose registers. The first
building blocks of the CPU are the ALU and the ségi file.

1. Task IL:

- Model the 32x32-bit register file given in Figuré.2 as one single module in Logisim

- Test the register file for correct operation bytimg to and reading from different register
combinations.

2. Task 2: Arithmetic and Logical Unit (ALU) Design

- Design a 32-bit ALU to perform all the arithmetlogic and shift operations required by
your data path

- Model the your designed 32-bit ALU in Logisim
- Test the correct functionality of all operationglemented by the ALU.

11. Data Path Main Components Design

11.5 Bonus Question

One possible implementation of the shifter knowthasBarrel Shifter is given in Figure 11.6. This

architecture has the advantage of performing a eumboperations using the same hardware. You
are required to design such shifter and adaptyibto design. You need then to use it instead @f th

shifter made up of available shifters in Logisim.

The shifter is implemented with multiplexers andrimg (splitters in our design), the shift
operations can be: SLL, SRL, SRA, or ROR. The irfaia is extended to 63 bits according to Shift
Op, and the 63 bits are shifted right accordin§,&8S,$:%

-

5
sa
SLL t)D g SZ/L S/L SU/L
~ 0
:

0 - 0 ,

i split split =
© 32 -§ 31 X .?il:_i_:' 3 x TN EL 32 gl
T el 5 {31} -;l-!31: b
o = 31 = =5l kT - Rl BT o

L (]

1 1 e o 1
T2 16 4 ~ 2 N 1 S
Shift Shift Right Shift Right Shift Right Shift Right Shift Right
op Dor16bits Oor8bits OQor4bits 0or2bits 0 or 1 bit

Figure 11.6: Barrel shifter.

The Input data is extended from 32 to 63 bits Hevs:

« Ifshiftop=SRL then ext_data[62:0] =30, Data[31:0]}
« Ifshiftop=SRA then ext_data[62:0] = {Data[31] Data[31:0]}
e If shiftop = ROR then ext_data[62:0] = {Data[30;@ata[31:0]}
« If shift op = SLL then ext_data[62:0] = {Data[31:00*'}

- For SRL, the 32-bit input data is zero-extende@3dits

- For SRA, the 32-bit input data is sign-extende@3dits

- For ROR, 31-bit extension = lower 31 bits of data

- Then, shift right according to the shift amount

11. Data Path Main Components Design

- As the extended data is shifted right, the upp&s Will be: 0 (SRL), sign-bit (SRA), or
lower bits of data (ROR)

11. Data Path Main Components Design

