
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
COLLEGE OF COMPUTER SCIENCES & ENGINEERING

ICS 233 Computer Architecture & Assembly Language
Course Project -Term 072

Pipelined Processor Design

Due date: Wednesday, June 4, 2008

Project Objectives:
• Designing a Pipelined 16-bit MIPS-like processor
• Using Logisim simulator to model and test the processor
• Teamwork practice

Instruction Set Architecture
In this project, you will design a simple 16-bit MIPS-like processor with seven 16-bit
general-purpose registers: R1 through R7. R0 is hardwired to zero and cannot be written.
There is also one special-purpose 12-bit register, which is the program counter (PC). All
instructions are 16 bits and there are three instruction formats: R-type, I-type, and J-type as
shown below:

R-type format
4-bit opcode (Op), 3-bit register numbers (Rs, Rt, and Rd), and 3-bit function field (funct)

 funct3Op4 Rs3 Rt3 Rd3

I-type format
4-bit opcode (Op), 3-bit register numbers (Rs and Rt), and 6-bit immediate constant

Immediate6Op4 Rs3 Rt3

J-type format
4-bit opcode (Op) and 12-bit immediate constant

Op4 Immediate12

For R-type instructions, Rs and Rt specify the two source register numbers, and Rd specifies
the destination register number. The function field can specify at most eight functions for a
given opcode. Opcodes 0 and 1 are reserved for R-type instructions.
For I-type instructions, Rs specifies a source register number, and Rt can be a second source
or a destination register number. The immediate constant is only 6 bits because of the fixed-
size nature of the instruction. The 6-bit immediate constant is assumed to be sign-extended
for all instructions.
For J-type, a 12-bit immediate constant is used for J (jump), JAL (jump-and-link), and LUI
(load upper immediate) instructions.

 Page 1 of 5

Instruction Encoding
Sixteen R-type instructions, eleven I-type instructions, and three J-type instructions are
defined. These instructions, their meaning, and their encoding are shown below:

Instr Meaning Encoding
AND Reg(Rd) = Reg(Rs) & Reg(Rt) Op = 0000 Rs Rt Rd f = 000
OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op = 0000 Rs Rt Rd f = 001
NOR Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op = 0000 Rs Rt Rd f = 010
XOR Reg(Rd) = Reg(Rs) ^ Reg(Rt) Op = 0000 Rs Rt Rd f = 011
SLL Reg(Rd) = Reg(Rs) << Reg(Rt) Op = 0000 Rs Rt Rd f = 100
SRL Reg(Rd) = Reg(Rs) zero>> Reg(Rt) Op = 0000 Rs Rt Rd f = 101
SRA Reg(Rd) = Reg(Rs) sign>> Reg(Rt) Op = 0000 Rs Rt Rd f = 110
ROL Reg(Rd) = Reg(Rs) rotate<< Reg(Rt) Op = 0000 Rs Rt Rd f = 111

ADD Reg(Rd) = Reg(Rs) + Reg(Rt) Op = 0001 Rs Rt Rd f = 000
SUB Reg(Rd) = Reg(Rs) – Reg(Rt) Op = 0001 Rs Rt Rd f = 001
SLT Reg(Rd) = Reg(Rs) signed< Reg(Rt) Op = 0001 Rs Rt Rd f = 010
SLTU Reg(Rd) = Reg(Rs) unsigned< Reg(Rt) Op = 0001 Rs Rt Rd f = 011
DIV Reg(Rd) = Quot(Reg(Rs) / Reg(Rt)) Op = 0001 Rs Rt Rd f = 100
REM Reg(Rd) = Rem(Reg(Rs) / Reg(Rt)) Op = 0001 Rs Rt Rd f = 101
MUL Reg(Rd) = Reg(Rs) * Reg(Rt) Op = 0001 Rs Rt Rd f = 110
JR PC = lower 12 bits of Reg(Rs) Op = 0001 Rs 000 000 f = 111

LW Reg(Rt) = Mem(Reg(Rs) + ext(im6)) Op = 0010 Rs Rt Immediate6

SW Mem(Reg(Rs) + ext(im6)) = Reg(Rt) Op = 0011 Rs Rt Immediate6

ANDI Reg(Rt) = Reg(Rs) & ext(im6) Op = 0110 Rs Rt Immediate6

ORI Reg(Rt) = Reg(Rs) | ext(im6) Op = 0111 Rs Rt Immediate6

ADDI Reg(Rt) = Reg(Rs) + ext(im6) Op = 1000 Rs Rt Immediate6

BEQ Branch if (Reg(Rs) == Reg(Rt)) Op = 0100 Rs Rt Immediate6

BNE Branch if (Reg(Rs) != Reg(Rt)) Op = 0101 Rs Rt Immediate6

BLTZ Branch if (Reg(Rs) < 0) Op = 1100 Rs Rt Immediate6

BLEZ Branch if (Reg(Rs) ≤ 0) Op = 1101 Rs Rt Immediate6

BGTZ Branch if (Reg(Rs) > 0) Op = 1110 Rs Rt Immediate6

BGEZ Branch if (Reg(Rs) ≥ 0) Op = 1111 Rs Rt Immediate6

J PC = Immediate12 Op = 1001 Immediate12

JAL R7 = PC + 1, PC = Immediate12 Op = 1011 Immediate12

LUI R1 = Immediate12 << 4 Op = 1010 Immediate12

There are three shift and one rotate instruction. For shift and rotate instructins, the least
significant 4 bits of register Rt are used as the shift/rotate amount. There is only one rotate
left (ROL) instruction. To rotate right by n bits, you can rotate left by 16 – n bits, because
registers are 16 bits. The Load Upper Immediate (LUI) is of the J-type to have a 12-bit
immediate constant loaded into the upper 12 bits of register R1. The LUI can be combined

 Page 2 of 5

with ORI (or ADDI) to load any 16-bit constant into a register. Although the instruction set is
reduced, it is still rich enough to write useful programs. We can have procedure calls and
returns using the JAL and JR instructions.

Memory
Your processor will have separate instruction and data memories with 212 = 4096 words each
(this is the maximum that can be supported under the current version of Logisim). Each word
is 16 bits or 2 bytes. Memory is word addressable. Only words (not bytes) can be read and
written to memory, and each address is a word address. This will simplify the processor
implementation. The PC contains a word address (not a byte address). Therefore, it is
sufficient to increment the PC by 1 (rather than 2) to point to the next instruction in memory.
Also, the Load and Store instructions can only load and store words. There is no instruction
to load or store a byte in memory.

Addressing Modes
For branch instructions (BEQ, BNE, BLTZ, BLEZ, BGTZ and BGEZ), PC-relative
addressing mode is used: PC = PC + sign-extend(immediate6). For jump instructions (J and
JAL), direct addressing is used: PC = Immediate12. For LW and SW instructions, base-
displacement addressing mode is used. The base address in register Rs is added to the sign-
extended immediate6 to compute the memory address.

Program Execution
The program will be loaded and will start at address 0 in the instruction memory. The data
segment will be loaded and will start also at address 0 in the data memory. You may also
have a stack segment if you want to support procedures. The stack segment can occupy the
upper part of the data memory and can grow backwards towards lower addresses. The stack
segment can be implemented completely in software.
To terminate the execution of a program, the last instruction in the program can jump or
branch to itself indefinitely.

Building a Pipelined Processor
Design and implement a pipelined-datapath and its control logic. A five-stage pipeline should
be constructed similar to the pipeline used in the MIPS processor. Add pipeline registers
between stages. Design the control logic to detect data dependencies among instructions and
implement the forwarding, hazard detection and stall unit. For branch instructions, reduce the
delay to one cycle only. If the branch is taken, then one instruction is flushed.

Testing
To test your CPU, implement the selection sort procedure given in class along with Max
procedure. Use this procedure to sort an array of 8 words of your choice. Then, write a
second program that tests each of the remaining untested instructions to demonstrate their
correct operation. Finally, write a third program that tests that your CPU can handle properly
data and control hazards. Convert your programs into machine instructions by hand and load
them into the instruction memory starting at address 0.

WARNING
Although Logisim is stable, it might crash from time to time. Therefore, it is best to save your
work often. Make several copies and versions of your design before making changes, in case
you need to go back to an older version.

 Page 3 of 5

Project Report
The report document must contain sections highlighting the following:

1 – Design and Implementation

• Specify clearly the design giving detailed description of the datapath, its components,
control, and the implementation details (highlighting the design choices you made and
why, and any notable features that your processor might have.)

• Provide drawings of the component circuits and the overall datapath.
• Provide a complete description of the control logic and the control signals. Provide a

table giving the control signal values for each instruction. Provide the logic equations
for each control signal.

• Provide a complete description of the forwarding logic, the cases that were handled,
and the cases that stall the pipeline, and the logic that you have implemented to stall
the pipeline.

• Provide list of sources for any parts of your design that are not entirely yours (if any).
• Carry out the design and implementation with the following aspects in mind:

- Correctness of the individual components
- Correctness of the overall design when wiring the components together
- Completeness: all instructions were implemented properly, detecting dependences

and forwarding was handled properly, and stalling the pipeline was handled
properly for all cases.

2 – Simulation and Testing

• Carry out the simulation of the processor developed using Logisim.
• Test each of the components individually and demonstrated its correct operation

including the ALU and register file.
• Describe all the features of the simulator used for simulating your design with a clear

emphasis on its advantages and limitations (if any) for simulating the design, list the
known bugs or missing features (if any).

• Describe the test programs that you used to test your design with enough comments
describing the program, its inputs, and its expected output. List all the instructions that
were tested and work correctly. List all the instructions that do not run properly.

• Describe all the cases that you handled involving dependences between instructions,
forwarding cases, and cases that stall the pipeline.

• Also provide snapshots of the Simulator window with your test program loaded and
showing the simulation output results.

3 – Teamwork
• This project is a team work project with a maximum of four students. Make sure to

write the names of all the group members on the project report title page.
• Each group should assign a group leader that leads the conduction of the project,

divided the project tasks among the team members. The group leader will submit a
weekly progress report summarizing the project progress.

• Project tasks should be divided among the group members so that each group member
contributes equally in the project and everyone is involved in all the following
activities:
- Design and Implementation
- Simulation and Testing

 Page 4 of 5

- Design and results reporting
• Clearly show the work done by each group member using a chart and prepare an

execution plan showing the time frame for completing the subtasks of the project. You
can also mention how many meetings were conducted between the group members to
discuss the design, implementation, and testing.

• Students who help other team members should mention that to earn credit for that.

Submission Guidelines
All submissions will be done through WebCT.
Attach one zip file containing all the design circuits, the test programs source code and binary
instruction files that you have used to test your design, their test data, as well as the report
document.
Submit also a hard copy of the report during the class lecture.

Grading policy:
The grade will be divided according to the following components:
■ Correctness: whether your implementation is working
■ Completeness and testing: whether all instructions and cases have been implemented,

handled, and tested properly
■ Participation and contribution to the project
■ Report organization and clarity

Late policy:
The project should be submitted on the due date. Late projects are accepted, but will be
penalized 5% for each late day and for a maximum of 5 late days (or 25%). Projects
submitted after 5 late days will not be accepted.

 Page 5 of 5

