
 Page 1 of 14

 Nov. 22, 2014

ICS DEPARTMENT

ICS 233

COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Midterm Exam

First Semester (141)

Time: 1:00-3:30 PM

Student Name : _KEY__

Student ID. : __

Question Max Points Score

Q1 35

Q2 7

Q3 20

Q4 18

Q5 10

Q6 10

Total 100

Dr. Aiman El-Maleh

Dr. Samer Arafat

 Page 2 of 14

 [35 Points]

(Q1) Fill in the blank in each of the following questions:

(1) Each memory cell of DRAM holds 1 bit of information and consists of one

transistor(s) and one capacitor(s). (1 Point)

(2) Typically, the SRAM technology is used for the cache memory. (1 Point)

(3) Given a magnetic disk with rotation speed = 15000 rotations per minute and

average seek time 10 milliseconds, then the time needed for one rotation is

60/15000=0.004s=4 milliseconds. (1 Point)

(4) A processor with 2.0 GHz speed has a 1/(2x109)=0.5x10-9s=500x10-12s=500

picoseconds clock cycle duration. (1 Point)

(5) A certain chip manufacturing process produces 25 bad dies, on average. Given

that the total number of dies on any given wafer is 300, then, this process has a

yield equal to (300-25)/300=275/300=91.67 %. (1 Point)

(6) Cache memory is faster than random access memory and slower than registers.

 (1 Point)

(7) One main advantage for programming in high-level language is program

development is faster or programs are portable.

(1 Point)

(8) One main advantage for programming in assembly language is space and time

efficiency or accessibility to system hardware.

(1 Point)

(9) Assuming variable Array is defined as shown below:

Array: .byte 1, -1, 2, -2, 3, -3, 4, -4

After executing the following sequence of instructions, the content of

the three registers is $t1=0x00000003 $t2=0xfffffd03 and

$t3=0xfc04fd03.

 (3 Points)

la $t0, Array

lbu $t1, 4($t0)

lh $t2, 4($t0)

lw $t3, 4($t0)

 Page 3 of 14

(10) Assume that the instruction j NEXT is at address 0x0040002c in the text

segment, and the label NEXT is at address 0x00400018. Then, the address stored

in the assembled instruction for the label NEXT is 0x0100006. (2 Point)

(11) Assume that the instruction bne $t0, $t1, NEXT is at address 0x0040002c in

the text segment, and the label NEXT is at address 0x00400018. Then, the address

stored in the assembled instruction for the label NEXT is (0x00400018-

0x00400030)/4=0xfffa. (2 Points)

(12) Given that the instruction jal MyProc is at address 0x0040002c in the text

segment, and that MyProc is at address 0x00400018. Then, the address stored in

$ra register after executing this instruction is 0x00400030.

(1 Point)

(13) To allocate 10 words, each initialized by 0, we use the following assembler

directive .word 0:10.

(1 Point)

(14) The pseudo instruction bge $s2, $s1, Next is implemented by the

following minimum MIPS instructions:

slt $at, $s2, $s1

beq $at, $0, Next

(2 Points)

(15) The code given below prints the following:

Midterm Exam

 ICS 233 is easy!!

Note that the ASCII code for the line feed character is 10 and the ASCII code for

the carriage return character is 13. (2 Points)

MSG: .ascii "Midterm Exam "

 .byte 10

 .ascii "ICS 233 "

 .asciiz "is easy !! "

 li $v0, 4

 la $a0, MSG

 syscall

 Page 4 of 14

(16) Using minimum native MIPS instructions, the assembly code to Jump to label

L1 if bits 0, 2, and 5 in $t0 are all set (i.e. =1) is:

ori $t1 $0, 0x25

andi $t0, $t0, $t1

beq $t0, $t1, L1

 (3 points)

(17) To multiply the signed content of register $t0 by 63.75 without using

multiplications and division instructions, we use the following instructions:

sll $t1, $t0, 6

sra $t2, $t0, 2

subu $t0, $t1, $t2

 (3 points)

(18) Assuming that all registers contain signed numbers, the MIPS assembly code

(with minimum execution time) to implement the equation $v0=(5-16*$a0)/($a1)

is :

ori $v0, $0, 5

shl $t0, $a0, 4

subu $v0, $v0. $t0

div $v0, $a1

mflo $v0

 (3 points)

(19) Suppose that we would like to translate 8-bit numbers into characters

according to a given translation table. Part of the translation table is shown below.

The MIPS assembly code to translate a number in register $t0 according to the

translation table below and store the resulting character in the same register is (e.g.

if $t0=3 the program should store ‘G’ in $t0):

0 1 2 3 4 5 6 7 8 …

‘a’ ‘C’ ‘x’ ‘G’ ‘y’ ‘!’ ‘h’ ‘?’ ‘-’ …

.data Table .ascii “aCxGy!h?- ….”

la $t1, Table

add $t0, $t0, $t1

lb $t0, 0($t0)

 (2 points)

(20) Consider a simplified 5-bit floating-point representation following the general

guidelines of the IEEE standard format. Suppose that the number of bits used for

the exponent is 2 bits and for the fraction is 2 bits. Then, the smallest and largest

positive values of normalized numbers that can be represented using this

representation are 1.00x20=1 and 1.11x21=14/4=3.5 and the largest error in this

representation is 0.25. (3 points)

 Page 5 of 14

[7 Points]

(Q2)

(i) Assuming that one byte is typed into each small block (one word per row) in the

table below, fill out the table for the following data segment. Assume a Little

Endian ordering, which is the same as the Mars 4.4 simulator default. Start from

the top and work out the rest of the memory segment. Assume that the address of

the first byte is 0x10010000. Remember that hex numbers start with 0x. Note that

you do not need to show the ASCII code of characters. (5 Points)

.data

 var1: .BYTE 3,'1', -7

 .ALIGN 0

 var2: .WORD 10

 str1: .ASCIIZ "ICS"

 .ALIGN 2

 var3: .WORD 0xabcdef22

 .ALIGN 3

 Var4: .HALF -1

 MSB LSB Address

0a

f9 ‘1’ 03 0x10010000

‘I’

00 00 00 0x10010004

00 ‘S’ ‘C’ 0x10010008

ab

cd ef 22 0x1001000c

 ff ff 0x10010010

 0x10010014

(ii) Fill out the symbol table, below, that corresponds to the data segment in Part (i),

above. (2 Points)

Label Address

var1 0x10010000

var2 0x10010003

str1 0x10010007

var3 0x1001000c

var4 0x10010010

 Page 6 of 14

 [20 Points]

(Q3) Answer the following questions. Show how you obtained your answer:

(i) Determine what will be displayed after executing the following code: (5 Points)

 li $a0, 23

 li $a1, 5

 div $a0, $a1

mflo $a0

 li $v0, 1

 syscall

 li $a0, '.'

 li $v0, 11

 syscall

 li $t0, 10

 mfhi $t1

 mul $t1, $t1, $t0

 div $t1, $a1

 mflo $a0

 li $v0, 1

 syscall

 The program will display 4.6 which is the result of dividing 23 by 5.

(ii) Given the following definition in the data segment:

Array: .word 0, 1, 2, 3, 4

 .word 5, 6, 7, 8, 9

 .word 10, 11, 12, 13, 14

Determine the content of Array after executing the following code: (5 Points)
 la $t0, Array

 li $t1, 5

 li $t2, 20

 addu $t2, $t2, $t0

 li $t3, 40

 addu $t3, $t3, $t0

 Next: lw $t4, 0($t2)

 lw $t5, 0($t3)

 sw $t4, 0($t3)

 sw $t5, 0($t2)

 addi $t2, $t2, 4

 addi $t3, $t3, 4

 addi $t1, $t1, -1

 bnez $t1 Next

The code will swap row 1 and row 2 in the array and the content of Array after

executing the code will be:

Array: .word 0, 1, 2, 3, 4

 .word 10, 11, 12, 13, 14

 .word 5, 6, 7, 8, 9

 Page 7 of 14

(iii) Determine what will be displayed after executing the following code: (5 Points)

 li $t0, 0x1d76

 andi $a0, $t0, 0x1f

 li $v0, 1

 syscall

 li $a0, '-'

 li $v0, 11

 syscall

 srl $t0, $t0, 5

 andi $a0, $t0, 0xf

 li $v0, 1

 syscall

 li $a0, '-'

 li $v0, 11

 syscall

 srl $t0, $t0, 4

 andi $a0, $t0, 0x3ff

 addu $a0, $a0, 2000

 li $v0, 1

 syscall

The program will display 22-11-2014, which is the date of the exam!.

(iv) Given the following definition in the data segment: (5 Points)

TABLE: .asciiz "Emad Ali Anas"

Determine the content of TABLE after executing the following code:

 li $t0, 'a'

 li $a0, '*'

 la $t1, TABLE

 addi $t1, $t1, -1

Next: addi $t1, $t1, 1

 lbu $t2, 0($t1)

 beq $t2, $0, ENL

 ori $t2, $t2, 0x20

 bne $t2, $t0, Next

 sb $a0, 0($t1)

 j Next

ENL:

The program will replace all occurrences of ‘a’ and ‘A’ in Table by ‘*. Thus the

content of TABLE will be:

TABLE: .asciiz "Em*d *li *n*s"

 Page 8 of 14

[18 Points]

(Q4) Write separate MIPS assembly code fragments with minimum instructions to implement

each of the given requirements.

(i) Given the following high level language code structure, write down the

corresponding MIPS assembly language instructions: (6 Points)
i = 1;

size = 10;

while (i < size || A[i] !=0){

 A[i] = A[i] + A[i – 1] ;

 i = i + 1;

 }

Assume that the assembler has assigned i to register $s0, size to register $s1,

and has stored the address of array A in register $s2.

 li $s0, 1

 li $s1, 10

While: sll $t0, $s0, 2

 addu $t0, $s2, $t0

 lw $t1, 0($t0)

 bne $t1, $0, WhileBody

bge $s0, $s1, EndWhile

WhileBody: lw $t2, -4($t0)

 addu $t1, $t1, $t2

 sw $t1, 0($t0)

 addiu $s0, $s0, 1

 j While

EndWhile:

(ii) Assuming that functions F and G receive two arguments in $a0 and $a1 and

return their results in $v0, implement the function F given below saving needed

registers on the stack. Save changed registers according to the assumed

programming convention. (6 Points)

int F(int a, int b) {

 return a+G(b, G(a, b));

}

F: addiu $sp, $sp, -12 # frame = 12 bytes

 sw $ra, 0($sp) # save $ra

 sw $a0, 4($sp) # save argument a

 sw $a1, 8($sp) # save argument b

 jal G # call g(a,b)

 lw $a0, 8($sp) # $a0 = b

 move $a1, $v0 # $a1 = g(a,b)

 jal G # call g(b, g(a,b))

 lw $a0, 4($sp) # $a0 = a

 addu $v0, $a0, $v0 # $v0 = a+G(b, G(a, b))
 lw $ra, 0($sp) # restore $ra

 addiu $sp, $sp, 12 # free stack frame

 jr $ra # return to caller

 Page 9 of 14

(iii) Write a procedure that counts the number of even and odd integers that are input

via a keyboard. The user will continue to enter nonnegative integers until he

enters -1 to terminate the input. The procedure is called countevenodd and

returns the total count of odd integers in register $v1 and the total count of even

integers in register $v0. Assume that a main program prompts the user asking

for input and that the main program will print the output counts with proper

messages. You do not need to write the main program code. (6 Points)

Countevenodd:

 xor $t0, $t0, $t0 # number counter

 xor $v1, $v1, $v1 # odd counter

Loop:

 li $v0, 5

 syscall # read integer

 beq $v0, -1, EndLoop

 andi $v0, $v0, 1

 add $v1, $v1, $v0 # count number of odd’s

 addi $t0, $t0, 1

 j Loop

EndLoop:

 subu $v0, $t0, $v1 # compute number of even

 jr $ra

 Page 10 of 14

[10 Points]

(Q5)

(i) Assume that we have a Multiplicand = 1100 and a Multiplier = 0011.

Using the revised unsigned multiplication hardware, show the unsigned multiplication

product for the given numbers, above. The result of the multiplication should be an 8

bit unsigned number in the HI and LO registers. Show all the steps of your work.

 (4 Points)

Iteration Multiplicand Carry Product = HI,LO

0 Initialize 1100 00000011

1 LO[0] = 1 => ADD 0 11000011

Shift Right Product = (HI, LO) 01100001

2 LO[0] = 1 => ADD 1 00100001

Shift Right Product = (HI, LO) 10010000

3 LO[0] = 0 => Do Nothing 0 10010000

Shift Right Product = (HI, LO) 01001000

4 LO[0] = 0 => Do Nothing 0 01001000

Shift Right Product = (HI, LO) 00100100

(ii) Show the hardware diagram that corresponds to the revised integer (signed)

multiplication. Carefully label all parts and connections in your diagram.

(6 Points)

 Page 11 of 14

[10 Points]

(Q6)

(i) What is the decimal value of the following single-precision floating-point

number?

1100 0010 1110 1101 1000 0000 0000 0000. (2 Points)

 = - (1.1101101100000000...0)2 * 2(133-127)

= - (1.1101101100000000...0)2 * 26

= - (1110110.1100000000...0)2 = - 118.75

(ii) Show the single-precision floating-point binary representation for: 120.125.

(2 Points)

120.125=(1111000.001)2 = (1.111000001)2 * 26

Exp. = 6 +127=133

Single precision binary representation:

0100 0010 1111 0000 0100 0000 0000 0000

(iii) Perform the following floating-point operation rounding the result to the

nearest even. Perform the operation using guard, round and sticky bits.

 1100 0001 1000 0000 0000 0000 0000 0100

+ 0100 0011 1000 1000 0000 0000 0000 0000

(6 Points)

 1.000 1000 0000 0000 0000 0000 000 x 28

- 1.000 0000 0000 0000 0000 0100 000 x 24

= 1.000 1000 0000 0000 0000 0000 000 x 28

- 0.000 1000 0000 0000 0000 0000 010 x 28 (align)

= 01.000 1000 0000 0000 0000 0000 000 x 28

+ 11.111 0111 1111 1111 1111 1111 110 x 28 (2's complement)

= 00.111 1111 1111 1111 1111 1111 110 x 28

= +0.111 1111 1111 1111 1111 1111 110 x 28

= +1.111 1111 1111 1111 1111 1111 100 x 27 (normalize)

 Next, we round to the nearest even by adding 1 and the result becomes:

= +10.000 0000 0000 0000 0000 0000 x 27 (round)

 Next, we renormalize the result and the result becomes:

= +1.000 0000 0000 0000 0000 0000 x 28 (renormalize)

 Page 12 of 14

Syscall Services:

 Page 13 of 14

MIPS Instructions:

 Page 14 of 14

