PAGE
Page 5 of 14

 Nov. 22, 2014
ICS DEPARTMENT

ICS 233
COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Midterm Exam
First Semester (141)

Time: 1:00-3:30 PM

Student Name : _KEY__

Student ID. : __

	Question
	Max Points
	Score

	Q1
	35
	

	Q2
	7
	

	Q3
	20
	

	Q4
	18
	

	Q5
	10
	

	Q6
	10
	

	Total
	100
	

Dr. Aiman El-Maleh
Dr. Samer Arafat

 [35 Points]

(Q1) Fill in the blank in each of the following questions:

(1) Each memory cell of DRAM holds 1 bit of information and consists of one transistor(s) and one capacitor(s).

(1 Point)
(2) Typically, the SRAM technology is used for the cache memory.
(1 Point)
(3) Given a magnetic disk with rotation speed = 15000 rotations per minute and average seek time 10 milliseconds, then the time needed for one rotation is 60/15000=0.004s=4 milliseconds.

(1 Point)
(4) A processor with 2.0 GHz speed has a 1/(2x109)=0.5x10-9s=500x10-12s=500 picoseconds clock cycle duration.

(1 Point)
(5) A certain chip manufacturing process produces 25 bad dies, on average. Given that the total number of dies on any given wafer is 300, then, this process has a yield equal to (300-25)/300=275/300=91.67 %.

(1 Point)
(6) Cache memory is faster than random access memory and slower than registers.

(1 Point)
(7) One main advantage for programming in high-level language is program development is faster or programs are portable.
(1 Point)

(8) One main advantage for programming in assembly language is space and time efficiency or accessibility to system hardware.
(1 Point)
(9) Assuming variable Array is defined as shown below:

Array: .byte 1, -1, 2, -2, 3, -3, 4, -4
After executing the following sequence of instructions, the content of the three registers is $t1=0x00000003 $t2=0xfffffd03 and $t3=0xfc04fd03.

(3 Points)
la $t0, Array

lbu $t1, 4($t0)

lh $t2, 4($t0)

lw $t3, 4($t0)

(10) Assume that the instruction j NEXT is at address 0x0040002c in the text segment, and the label NEXT is at address 0x00400018. Then, the address stored in the assembled instruction for the label NEXT is 0x0100006.

(2 Point)

(11) Assume that the instruction bne $t0, $t1, NEXT is at address 0x0040002c in the text segment, and the label NEXT is at address 0x00400018. Then, the address stored in the assembled instruction for the label NEXT is (0x00400018-0x00400030)/4=0xfffa.

(2 Points)
(12) Given that the instruction jal MyProc is at address 0x0040002c in the text segment, and that MyProc is at address 0x00400018. Then, the address stored in $ra register after executing this instruction is 0x00400030.
(1 Point)

(13) To allocate 10 words, each initialized by 0, we use the following assembler directive .word 0:10.
(1 Point)

(14) The pseudo instruction bge $s2, $s1, Next is implemented by the following minimum MIPS instructions:
slt $at, $s2, $s1
beq $at, $0, Next
(2 Points)

(15) The code given below prints the following:

Midterm Exam

 ICS 233 is easy!!
Note that the ASCII code for the line feed character is 10 and the ASCII code for the carriage return character is 13.

(2 Points)
MSG: .ascii "Midterm Exam "

 .byte 10

 .ascii "ICS 233 "

 .asciiz "is easy !! "

li $v0, 4

la $a0, MSG

syscall

(16) Using minimum native MIPS instructions, the assembly code to Jump to label L1 if bits 0, 2, and 5 in $t0 are all set (i.e. =1) is:
ori $t1 $0, 0x25

andi $t0, $t0, $t1
beq $t0, $t1, L1
 (3 points)

(17) To multiply the signed content of register $t0 by 63.75 without using multiplications and division instructions, we use the following instructions:

sll $t1, $t0, 6
sra $t2, $t0, 2

subu $t0, $t1, $t2
 (3 points)

(18) Assuming that all registers contain signed numbers, the MIPS assembly code (with minimum execution time) to implement the equation $v0=(5-16*$a0)/($a1) is :
ori $v0, $0, 5
shl $t0, $a0, 4
subu $v0, $v0. $t0

div $v0, $a1

mflo $v0
 (3 points)

(19) Suppose that we would like to translate 8-bit numbers into characters according to a given translation table. Part of the translation table is shown below. The MIPS assembly code to translate a number in register $t0 according to the translation table below and store the resulting character in the same register is (e.g. if $t0=3 the program should store ‘G’ in $t0):

	0
	1
	2
	3
	4
	5
	6
	7
	8
	…

	‘a’
	‘C’
	‘x’
	‘G’
	‘y’
	‘!’
	‘h’
	‘?’
	‘-’
	…

.data Table .ascii “aCxGy!h?- ….”
la $t1, Table

add $t0, $t0, $t1

lb $t0, 0($t0)

 (2 points)

(20) Consider a simplified 5-bit floating-point representation following the general guidelines of the IEEE standard format. Suppose that the number of bits used for the exponent is 2 bits and for the fraction is 2 bits. Then, the smallest and largest positive values of normalized numbers that can be represented using this representation are 1.00x20=1 and 1.11x21=14/4=3.5 and the largest error in this representation is 0.25.

(3 points)
[7 Points]
(Q2)

(i) Assuming that one byte is typed into each small block (one word per row) in the table below, fill out the table for the following data segment. Assume a Little Endian ordering, which is the same as the Mars 4.4 simulator default. Start from the top and work out the rest of the memory segment. Assume that the address of the first byte is 0x10010000. Remember that hex numbers start with 0x. Note that you do not need to show the ASCII code of characters. (5 Points)
.data

var1: .BYTE 3,'1', -7

.ALIGN 0

var2: .WORD 10

str1: .ASCIIZ "ICS"

.ALIGN 2

var3: .WORD 0xabcdef22

.ALIGN 3

Var4: .HALF -1
 MSB LSB Address

	0a

	f9
	‘1’
	03
	0x10010000

	‘I’

	00
	00
	00
	0x10010004

	
	00
	‘S’
	‘C’
	0x10010008

	ab

	cd
	ef
	22
	0x1001000c

	
	
	ff
	ff
	0x10010010

	
	
	
	
	0x10010014

(ii) Fill out the symbol table, below, that corresponds to the data segment in Part (i), above. (2 Points)
	Label
	Address

	var1
	0x10010000

	var2
	0x10010003

	str1
	0x10010007

	var3
	0x1001000c

	var4
	0x10010010

[20 Points]
(Q3) Answer the following questions. Show how you obtained your answer:

(i) Determine what will be displayed after executing the following code: (5 Points)

li $a0, 23

li $a1, 5

div $a0, $a1

mflo $a0

li $v0, 1

syscall

li $a0, '.'

li $v0, 11

syscall

li $t0, 10

mfhi $t1

mul $t1, $t1, $t0

div $t1, $a1

mflo $a0

li $v0, 1

syscall

 The program will display 4.6 which is the result of dividing 23 by 5.
(ii) Given the following definition in the data segment:

Array: .word 0, 1, 2, 3, 4

 .word 5, 6, 7, 8, 9

 .word 10, 11, 12, 13, 14

Determine the content of Array after executing the following code: (5 Points)

 la $t0, Array

 li $t1, 5

 li $t2, 20

 addu $t2, $t2, $t0

 li $t3, 40

 addu $t3, $t3, $t0

 Next: lw $t4, 0($t2)

 lw $t5, 0($t3)

 sw $t4, 0($t3)

 sw $t5, 0($t2)

 addi $t2, $t2, 4

 addi $t3, $t3, 4

 addi $t1, $t1, -1

 bnez $t1 Next
The code will swap row 1 and row 2 in the array and the content of Array after executing the code will be:

Array: .word 0, 1, 2, 3, 4

 .word 10, 11, 12, 13, 14
 .word 5, 6, 7, 8, 9

(iii) Determine what will be displayed after executing the following code: (5 Points)

li $t0, 0x1d76

andi $a0, $t0, 0x1f

li $v0, 1

syscall

li $a0, '-'

li $v0, 11

syscall

srl $t0, $t0, 5

andi $a0, $t0, 0xf

li $v0, 1

syscall

li $a0, '-'

li $v0, 11

syscall

srl $t0, $t0, 4

andi $a0, $t0, 0x3ff

addu $a0, $a0, 2000

li $v0, 1

syscall

The program will display 22-11-2014, which is the date of the exam!.
(iv) Given the following definition in the data segment: (5 Points)
TABLE: .asciiz "Emad Ali Anas"
Determine the content of TABLE after executing the following code:

li $t0, 'a'

li $a0, '*'

la $t1, TABLE

addi $t1, $t1, -1

Next:
addi $t1, $t1, 1

lbu $t2, 0($t1)

beq $t2, $0, ENL

ori $t2, $t2, 0x20

bne $t2, $t0, Next

sb $a0, 0($t1)

j Next

ENL:
The program will replace all occurrences of ‘a’ and ‘A’ in Table by ‘*. Thus the content of TABLE will be:
TABLE: .asciiz "Em*d *li *n*s"
[18 Points]
(Q4) Write separate MIPS assembly code fragments with minimum instructions to implement each of the given requirements.
(i) Given the following high level language code structure, write down the corresponding MIPS assembly language instructions: (6 Points)
i = 1;

size = 10;

while (i < size || A[i] !=0){

 A[i] = A[i] + A[i – 1] ;

i = i + 1;

 }

Assume that the assembler has assigned i to register $s0, size to register $s1, and has stored the address of array A in register $s2.

li $s0, 1

li $s1, 10

While:

sll $t0, $s0, 2

addu $t0, $s2, $t0

lw $t1, 0($t0)

bne $t1, $0, WhileBody
bge $s0, $s1, EndWhile

WhileBody:
lw $t2, -4($t0)

addu $t1, $t1, $t2

sw $t1, 0($t0)

addiu $s0, $s0, 1

j While

EndWhile:

(ii) Assuming that functions F and G receive two arguments in $a0 and $a1 and return their results in $v0, implement the function F given below saving needed registers on the stack. Save changed registers according to the assumed programming convention. (6 Points)
int F(int a, int b) {

return a+G(b, G(a, b));

}

F:
addiu
$sp, $sp, -12
frame = 12 bytes

sw
$ra, 0($sp)
save $ra

sw
$a0, 4($sp)
save argument a

sw
$a1, 8($sp)
save argument b

jal
G

call g(a,b)

lw
$a0, 8($sp)
$a0 = b

move
$a1, $v0
$a1 = g(a,b)

jal
G

call g(b, g(a,b))

lw
$a0, 4($sp)
$a0 = a

addu
$v0, $a0, $v0
$v0 = a+G(b, G(a, b))

lw
$ra, 0($sp)
restore $ra

addiu
$sp, $sp, 12
free stack frame

jr
$ra

return to caller

(iii) Write a procedure that counts the number of even and odd integers that are input via a keyboard. The user will continue to enter nonnegative integers until he enters -1 to terminate the input. The procedure is called countevenodd and returns the total count of odd integers in register $v1 and the total count of even integers in register $v0. Assume that a main program prompts the user asking for input and that the main program will print the output counts with proper messages. You do not need to write the main program code. (6 Points)
Countevenodd:

xor $t0, $t0, $t0

number counter

xor $v1, $v1, $v1
odd counter

Loop:

li $v0, 5

syscall

read integer

beq $v0, -1, EndLoop

andi $v0, $v0, 1

add $v1, $v1, $v0
count number of odd’s

addi $t0, $t0, 1

j Loop

EndLoop:

subu $v0, $t0, $v1
compute number of even

jr $ra
[10 Points]
(Q5)

(i) Assume that we have a Multiplicand = 1100 and a Multiplier = 0011.
Using the revised unsigned multiplication hardware, show the unsigned multiplication product for the given numbers, above. The result of the multiplication should be an 8 bit unsigned number in the HI and LO registers. Show all the steps of your work.
 (4 Points)
	Iteration
	Multiplicand
	Carry
	Product = HI,LO

	0
	Initialize
	1100
	
	00000011

	1
	LO[0] = 1 => ADD
	
	0
	11000011

	
	Shift Right Product = (HI, LO)
	
	
	01100001

	2
	LO[0] = 1 => ADD
	
	1
	00100001

	
	Shift Right Product = (HI, LO)
	
	
	10010000

	3
	LO[0] = 0 => Do Nothing
	
	0
	10010000

	
	Shift Right Product = (HI, LO)
	
	
	01001000

	4
	LO[0] = 0 => Do Nothing
	
	0
	01001000

	
	Shift Right Product = (HI, LO)
	
	
	00100100

(ii) Show the hardware diagram that corresponds to the revised integer (signed) multiplication. Carefully label all parts and connections in your diagram.

(6 Points)

[image: image1.png]< ALU produces 32-bit result + Sign bit

<+ Sign bit set as follows: HI =0, LO = Multipier

< No overflow = Extend sign-bit of result

<~ Overflow = Invert sign-bit of result -

First 31 terations: HI = HI + Multiplicand

32 bits 32bits Last iteration: HI = HI — Multiplicand

Shift Right (Sign, HI, LO) 1 bit

No
21 Repetition
v

Yes

shift right

Lofo]

[10 Points]
(Q6)
(i) What is the decimal value of the following single-precision floating-point number?
1100 0010 1110 1101 1000 0000 0000 0000.

(2 Points)

= - (1.1101101100000000...0)2 * 2(133-127)
= - (1.1101101100000000...0)2 * 26
= - (1110110.1100000000...0)2 = - 118.75

(ii) Show the single-precision floating-point binary representation for: 120.125.
(2 Points)

120.125=(1111000.001)2 = (1.111000001)2 * 26
Exp. = 6 +127=133

Single precision binary representation:
0100 0010 1111 0000 0100 0000 0000 0000
(iii) Perform the following floating-point operation rounding the result to the nearest even. Perform the operation using guard, round and sticky bits.

1100 0001 1000 0000 0000 0000 0000 0100
+
0100 0011 1000 1000 0000 0000 0000 0000
(6 Points)

1.000 1000 0000 0000 0000 0000 000
x 28
-
1.000 0000 0000 0000 0000 0100 000
x 24
=
1.000 1000 0000 0000 0000 0000 000
x 28
-
0.000 1000 0000 0000 0000 0000 010 x 28 (align)
= 01.000 1000 0000 0000 0000 0000 000
x 28
+ 11.111 0111 1111 1111 1111 1111 110 x 28 (2's complement)
= 00.111 1111 1111 1111 1111 1111 110
 x 28
= +0.111 1111 1111 1111 1111 1111 110
 x 28
= +1.111 1111 1111 1111 1111 1111 100
 x 27 (normalize)

Next, we round to the nearest even by adding 1 and the result becomes:
= +10.000 0000 0000 0000 0000 0000
x 27 (round)
 Next, we renormalize the result and the result becomes:
= +1.000 0000 0000 0000 0000 0000

x 28 (renormalize)
Syscall Services:
[image: image2.png]Service

$v0

Arguments / Result

Print Integer 1 | $a0 = integer value to print

Print Float 2 | $f12 = float value to print

Print Double 3 | $f12 = double value to print

Print String 4 | $a0 = address of null-terminated string

Read Integer | 5 | Return integer value in $v0

Read Float 6 | Return float value in $f0

Read Double | 7 |Return double value in $f0

Read String 8 2:? = s?:;er::n:fr:zfnlﬁebru;e:haraders to read
Print Char 11 | $a0 = character to print

Read Char 12 | Return character read in $v0

MIPS Instructions:
[image: image3.png]Instruction Meaning R-Type Format

add §s1, $s2, $53| $51 = 52 + §53 rs = $52rt= $s3)rd = §s1[sa = 0
addu §s1, $s2, $s3| $s1 15 = $52rt=$s3|rd = $s1[sa = 0
sub_§s1, $s2, $s3| $s1 15 = 521t =853 sa=0
subu §s1, $s2, $53] $s1 = $52 — §53 rs = $52[rt= 853 sa=0

[image: image4.png]Instruction Meaning R-Type Format

and $s1, $52, $53 |$s1 = $52 & $s3 s =$s2|rt=$s3|rd = $s1[sa = 0|f = 0x24
or_ $s1, $s2, $53[$s1 = $52 | $53 s = $s2| $s1 =

xor_$s1, $52, $53 [$s1 = $52 * $s3 s = $s2| $s1

nor_$s1, $52, $53 | $s1 = ~($52/$53) s = $52) $s1

[image: image5.png]sli

$s1,852,10

$s1

R-Type Format

srl

$s1,852,10

sta

$s1, $s2, 10

sliv

951,852,853

sriv.

951,852,853

srav

951,852,853

$s1=9s2 >> $s3

SR [E[E=

8|8[8(8|8(8

RN ENPRIN Y

[image: image6.png]Instructi Meaning |-Type Format

addi__$s1, $52, 10 $52 + 10 rs = $52 ri=$s1 imm?® = 10
addiu_$s1, $52, 10 $s2+ 10 15 =$52| ri=9s1 imm? = 10
andi_$s1, $52, 10 | $51 =952 & 10 15 =$52| ri=9s1 imm® = 10
ori_ $s1, 852,10 $521 10 15 =$52| ri=59s1 imm® = 10
xori__$s1, $52, 10 $52"10 15 = $52| ri=9s1 imm® = 10
i $s1,10 $s1=10<<16 0 [rt=8s1 imm™ =10

[image: image7.png]Meaning Format

j label jump to label 2 imm28

beq rs, i, label |branchif (rs ==rt) [opf=4 | rs® | rt5 imm?1®
bne rs, i, label |branchif (rs!=rt) |opf=5| rs® | rt5 imm?1®
blez rs,label |branchif (rs<=0) |op®=6| rs® | 0 imm?®
bgtz rs,label |branchif(rs>0) |opf=7| rs® | 0O imm?10
bltz rs,label |branchif(rs<0) |opf=1|rs® | O imm?1e
bgez rs, label |branchif (rs>=0) |opf=1| rs® | 1 imm?®

[image: image8.png]Instruction Meaning Format

sit rd,rs, it rd=(rs<rt?1:0) rso | 5 [rd® | 0 | Ox2a
sltu rd, rs, it rd=(rs<rt?1:0) rso | 5 [rd® | 0 | Ox2b
sl rt, rs, imm| rt=(rs<imm?1:0) rsd | o imm?1°
sltiu_rt, rs, imm?| rt=(rs<imm?1:0) rsd | o imm?1°

[image: image9.png]Instruction Meaning |-Type Format
I rt, imm'®(rs) | rt = MEM[rs+imm'] | 0x20 | rs® i imm®

th rt, imm'®(rs) | rt = MEM[rs+imm?] | 0x21 | rs® i imm?®

Iw_rt, imm®(rs) | rt = MEM[rs+imm'6] | 0x23 | rs® i imm1®

1t = MEM[rs+imm®] | 0x24 | rs5 | 16 imms

sb _rt, immS(rs) | MEM[rs+imm™] =rt | 0x28 | rs® i imm?®

sh rt, imm'S(rs) | MEM[rs+imm™] =rt | 0x29 | rs® i imm?®

(rs)
(rs)
(rs)
(rs)
Ihu_t, imm&(rs) [rt = MEM(rs+immé] | 0x25 | rs5 | rtf imme
(rs)
(rs)
(rs)

sw_rt, imm?S(rs) | MEM[rs+imm®] =rt | Ox2b | rs® i imm?®

[image: image10.png]Instruction Format

jal__label $31=PC+4, jump [opf=3 imm28

ir Rs PC=Rs op®=0] rsd 0 [} 8
jalr _Rd, Rs [Rd=PC+4, PC=Rs | 0p®=0 | rs® rd®| 0 9

[image: image11.png]Instruction Meaning Format

mult Rs, Rt Hi,Lo=Rs xRt Rt® 0 0 0x18
multu Rs, Rt Hi,Lo=Rs xRt Rt> 0 0 0x19
mul Rd,Rs, Rt |Rd=Rs xRt Rt" |Rd® | 0 0x02
div._Rs Rt Hi,Lo=Rs /Rt Rt | 0 0 Ox1a
divu Rs, Rt Hi,Lo=Rs /Rt Rt> 0 0 0x1b
mfhi Rd Rd =Hi 0 |Rd®| 0O 0x10
mflo Rd Rd =Lo 0 |[Rd®| 0O 0x12

