
 Page 1 of 13

King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering

Computer Engineering Department

COE 301 COMPUTER ORGANIZATION

ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Term 161 (Fall 2016-2017)

Major Exam 2

Saturday Dec. 10, 2016

Time: 150 minutes, Total Pages: 13

Name:______________________________ ID:__________________ Section: _______

Notes:

 Do not open the exam book until instructed

 Answer all questions

 All steps must be shown

 Any assumptions made must be clearly stated

Question Max Points Score

Q1 20

Q2 10

Q3 17

Q4 23

Total 70

Dr. Aiman El-Maleh

Dr. Marwan Abu Amara

 Page 2 of 13

 [20 Points]

(Q1) Write MIPS programs with minimal used instructions. Use MIPS programming

convention in saving and restoring registers in procedures.

(i) [4 points] Write a procedure GetAscii that receives a single hexadecimal digit

in register $a0 and returns the ASCII code of that digit in register $v0. For

example, if $a0=0x9 the procedure will return 0x39 in $v0 and if $a0=0xA, the

procedure will return 0x41 in $a0. Assume the use of capital letters for the

digits A to F.

(ii) [11 points] Write a procedure DispHex that receives a number in register $a0

and displays the hexadecimal representation of that number. Only significant

hexadecimal digits need to be displayed. For example, if $a0=0x1E, the

procedure will display 1E. Your DisHex procedure should utilize the GetAscii

procedure.

(iii) [5 points] Write a MIPS program that asks the user to enter a decimal number

and displays its hexadecimal content using the DispHex procedure. Two

sample runs of the program are given below:

 Enter a decimal number: 260

 Your number in hexadecimal is: 0x104

 Enter a decimal number: 0

 Your number in hexadecimal is: 0x0

.data

Prompt: .asciiz "Enter a decimal number: "

MSG: .asciiz "Your number in hexadecimal is: 0x"

TTable: .ascii "0123456789ABCDEF"

.text

la $a0, Prompt

li $v0, 4

syscall

li $v0, 5

syscall

move $s0, $v0

la $a0, MSG

li $v0, 4

syscall

move $a0, $s0

jal DispHex

li $v0, 10

syscall

 Page 3 of 13

DispHex:

#save registers

addi $sp, $sp, -12

sw $s0, 0($sp)

sw $s1, 4($sp)

sw $s2, 8($sp)

li $s0, 8

move $s1, $a0

li $s2, 0

Next:

rol $s1, $s1, 4

andi $t0, $s1, 0xF

bne $s2, $0, Sig

beq $s0, 1, Sig

beq $t0, $0, Skip

li $s2, 1

Sig:

move $a0, $t0

addi $sp, $sp, -4

sw $ra, ($sp)

jal GetAscii

lw $ra ($sp)

addi $sp, $sp, 4

move $a0, $v0

li $v0, 11

syscall

Skip:

addi $s0, $s0, -1

bne $s0, $0, Next

restore registers

lw $s0, 0($sp)

lw $s1, 4($sp)

lw $s2, 8($sp)

addi $sp, $sp, 12

jr $ra

GetAscii:

la $t0, TTable

add $t0, $t0, $a0

lb $v0, ($t0)

jr $ra

 Page 4 of 13

 [10 points]

(Q2)

(i) [4 Points] Given that Multiplicand=0111 and Multiplier=1011 are signed 2’s

complement numbers, show the signed multiplication of Multiplicand by

Multiplier. The result of the multiplication should be an 8 bit signed number

in HI and LO registers. Show the steps of your work.

Iteration Multiplicand Sign Product =HI,LO

0 Initialize 0111 0000 1011

1 LO[0] = 1 => ADD 0 0111 1011

Shift Product = (HI, LO) right 1 bit 0111 0011 1101

2 LO[0] = 1 => ADD 1 1010 1101

Shift Product = (HI, LO) right 1 bit 0111 overflow 01101 0110

3 LO[0] = 0 => Do nothing 0 0101 0110

Shift Product = (HI, LO) right 1 bit 0111 0010 1011

4 LO[0] = 1 => SUB (ADD 2's compl) 1001 1 1011 1011

Shift Product = (HI, LO) right 1 bit 1101 1101

(ii) [6 Points] Given that Dividend=0111 and Divisor=1011 are signed 2’s

complement numbers, show the signed division of Dividend by Divisor. The

result of division should be stored in the Remainder and Quotient registers.

Show the steps of your work, and show the final result.

Since the Divisor is negative, we take its 2’s complement  Divisor = 0101

 Sign of Quotient = negative, Sign of Remainder = positive

Iteration Remainder

(HI)

Quotient

(LO)

Divisor Difference

0 Initialize 0000 0111 0101

1 1: SLL, Difference 0000 1110 0101 1011

2: Diff < 0 => Do Nothing 0000 1110 0101

2 1: SLL, Difference 0001 1100 0101 1100

2: Diff < 0 => Do Nothing 0001 1100 0101

3 1: SLL, Difference 0011 1000 0101 1110

2: Diff < 0 => Do Nothing 0011 1000 0101

4 1: SLL, Difference 0111 0000 0101 0010

2: Rem = Diff, set lsb Quotient 0010 0001 0101

Final Result 0010 1111

 Page 5 of 13

 [17 points]

(Q3)

1. [2 Points] Find the decimal value of the following single precision float:

 [0, 1000 1000, 0000 0100 1100 0000 0000 000]

= + (1.0000010011000...0)2 * 2(136-127) = + (1.0000010011000...0)2* 29

= +1000001001.1 = +521.5

2. [2 Points] Find the decimal value of the following single precision float:

 [1, 0000 0000, 0110 0000 0000 0000 0000 000]

= - (0.01100...0)2 * 2-126 = -1.5  2-128

3. [3 Points] Find the normalized single precision representation of –59.625.

59.625 = 111011.101 = 1.11011101 * 25

 Exponent = 5 + 127 = 132

[1, 1000 0100, 1101 1101 0000 0000 0000 000]

4. [4 Points] Round the given single precision float with the given GRS bits using the

following rounding modes showing the resulting normalized number:
 GRS
 +1.111 1111 1111 1111 1111 1111 100 x 2-127

Zero: [+1.111 1111 1111 1111 1111 1111 x 2-127]

+infinity: [+1.000 0000 0000 0000 0000 0000 x 2-126]

-infinity: [+1.111 1111 1111 1111 1111 1111 x 2-127]

Nearest Even: [+1.000 0000 0000 0000 0000 0000 x 2-126]

 Page 6 of 13

5. [6 Points] Find the normalized difference between A and B (i.e., A-B) by using rounding

to +infinity. Perform the operation using guard, round and sticky bits.

A = +1.000 0101 1100 1010 1000 0001 × 24

B = +1.011 1001 0101 0000 0010 1000 × 2-1

1.000 0101 1100 1010 1000 0001 000 x 24

- 1.011 1001 0101 0000 0010 1000 000 x 2-1

 01.000 0101 1100 1010 1000 0001 000 x 24

- 00.000 0101 1100 1010 1000 0001 010 x 24 (align)

 01.000 0101 1100 1010 1000 0001 000 x 24

+ 11.111 1010 0011 0101 0111 1110 110 x 24 (2’s complement)

 00.111 1111 1111 1111 1111 1111 110 x 24

= + 0.111 1111 1111 1111 1111 1111 110 x 24

= + 1.111 1111 1111 1111 1111 1111 100 x 23 (normalize)

= + 10.000 0000 0000 0000 0000 0000 x 23 (round)

= + 1.000 0000 0000 0000 0000 0000 x 24 (renormalize)

 Page 7 of 13

[23 Points]

(Q4) Consider the single-cycle datapath and control given below along with ALU design for

the MIPS processor implementing a subset of the instruction set:

 Page 8 of 13

(i) Show the control signals generated for the execution of the following

instructions by filling the table given below: (5 points)

Op RegDst RegWrite ExtOp ALUSrc ALUOp Beq Bne J MemRead MemWrite MemtoReg

R-type
1 = Rd 1 x 0=BusB R-type 0 0 0 0 0 0

slti
0 = Rt 1 1=sign 1=Imm SLT 0 0 0 0 0 0

sw
x 0 1=sign 1=Imm ADD 0 0 0 0 1 x

beq
x 0 x 0=BusB SUB 1 0 0 0 0 x

j
x 0 x x x 0 0 1 0 0 x

(ii) Excluding the ALUOp, Beq, Bne and J signals, show the design of the control

unit for the control signals given in the table above based on the given

instructions. Assume that the opcode of these instructions is a 6-bit opcode such

that the opcode for R-type instructions is 0, the opcode for slti is 1, the opcode

for sw is 2, and so on for the rest of the instructions. (5 points)

 Page 9 of 13

(iii) Show the design of the Next PC block. (4 points)

(iv) We wish to add the following instructions to the MIPS single-cycle datapath.

Add any necessary datapath modifications and control signals needed for the

implementation of these instructions. Show only the modified and added

components to the datapath.

a. sra (3 points)

Instruction Meaning Format

 sra rd, rt, imm5 rd= rt>>imm16 Op6 = 0 0 rt5 rd5 Imm5 f6=3

For the sra instruction, examining the ALU one can see that the shift amont is

coming through the A-input of the ALU and the operand to be shifted comes

through the B input of the ALU. Thus, we need-to add a MUX on the A-input to

select between the output of a register and the immediate values. This MUX needs

to select only between the least significant 5 bits of BusA and bits 6 to 10 from

Imm16. The modified part in the datapath is shown below:

Ext

A
L
U

ALUCtrl

BusA

BusB

ALUSrc

zero

Imm16

Imm32

m

u

x

1

0

m

u

x

1

0

Shifti
ExtOp

 Page 10 of 13

b. jr (3 points)

Instruction Meaning Format

 jr rs PC=rs op6 = 0 rs5 0 0 0 8

For this instruction, the changes required in the datapath to implement it is to

load the PC from BusA, which is driven by the RS field. Thus, we need to add

a MUX to select the target address to be loaded in the PC either from the output

of the MUX choosing between the address from NextPC block and incremented

PC or from BusA. The required changes are shown below:

(v) Assume that the propagation delays for the major components used in the

datapath are as follows:

 Instruction and data memories: 120 ps

 ALU and adders: 30 ps

 Register file access (read or write): 14 ps

 Main control: 8 ps

 ALU control: 7 ps

Ignore the delays in the multiplexers, PC access, extension logic, and wires.

What is the cycle time for the single-cycle datapath given above? (3 points)

Cycle Time = IM + max(Main Control+ALU Control, Register Reading) +

ALU + DM + Register Write

 = 120 ps + 15 ps + 30 ps + 120 ps+ 14 ps = 299 ps

P
C

00

 +1

 30

m

u

x

1

0

jr

m

u

x

1

0

PCSrc

BusA

Address
from

NextPC

 Page 11 of 13

Syscall Services:

 Page 12 of 13

MIPS Instructions:

 Page 13 of 13

