
 Page 1 of 9

 January 8, 2009

COMPUTER ENGINEERING DEPARTMENT

ICS 233

COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Major Exam II

First Semester (081)

Time: 1:00-3:30 PM

Student Name : _KEY__

Student ID. : __

Question Max Points Score

Q1 20

Q2 16

Q3 16

Q4 16

Q5 8

Q6 8

Q7 16

Total 100

Dr. Aiman El-Maleh

 Page 2 of 9

[20 Points]

(Q1) Given below a summary of syscall services:

Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Read Integer 5 $v0 = integer read

Exit Program 10

(i) Determine the output produced by the following program given that the

program inputs are 7 and 4.

.text

.globl main

main:

li $v0, 5

syscall

move $t0, $v0

li $v0, 5

syscall

move $a1, $v0

move $a0, $t0

jal Proc1

move $a0, $v0

li $v0, 1

syscall

li $v0, 10

syscall

Proc1:

bne $a0, $a1, Skip

move $v0, $a0

jr $ra

Skip:

addi $sp, $sp, -8

sw $a0, ($sp)

sw $ra, 4($sp)

addi $a0, $a0, -1

jal Proc1

lw $t0, ($sp)

lw $ra, 4($sp)

addi $sp, $sp, 8

mul $v0, $v0, $t0

jr $ra

 The program computes 7x6x5x4=840 and then displays it.

 Page 3 of 9

(ii) Determine the output produced by the following program given that the

program input is 987.

.text

.globl main

main:

li $v0, 5

syscall

move $a0, $v0

jal Proc2

move $a0, $v0

li $v0, 1

syscall

li $v0, 10

syscall

Proc2:

li $t0, 10

move $t1, $a0

Next:

xor $t3, $t3, $t3

Again:

divu $t1, $t0

mflo $t1

mfhi $t2

addu $t3, $t3, $t2

bnez $t1, Again

move $t1, $t3

bge $t1, $t0, Next

move $v0, $t1

jr $ra

The program adds individual digits of the entered number to get another

number and repeats the process until the result is a single digit. Thus, the

program will display 6.

 Page 4 of 9

[16 Points]

(Q2) Given that Multiplicand=1010 and Multiplier=1111.

(i) Using the refined unsigned multiplication hardware, show the unsigned

multiplication of Multiplicand by Multiplier. The result of the

multiplication should be an 8 bit unsigned number in HI and LO registers.

Show the steps of your work.

Iteration Multiplicand Carry Product = HI,LO

0 Initialize (LO = Multiplier) 1010 0000 1111

1 LO[0] = 1 => ADD 0 1010 1111

Shift Product = (HI, LO) right 1 bit 1010 0101 0111

2 LO[0] = 1 => ADD 0 1111 0111

Shift Product = (HI, LO) right 1 bit 1010 0111 1011

3 LO[0] = 1 => ADD 1 0001 1011

Shift Product = (HI, LO) right 1 bit 1010 1000 1101

4 LO[0] = 1 => ADD 1 0010 1101

Shift Product = (HI, LO) right 1 bit 1001 0110

(ii) Using the refined signed multiplication hardware, show the signed

multiplication of Multiplicand by Multiplier. The result of the

multiplication should be an 8 bit signed number in HI and LO registers. Show

the steps of your work.

Iteration Multiplicand Sign Product = HI,LO

0 Initialize (LO = Multiplier) 1010 0000 1111

1 LO[0] = 1 => ADD 1 1010 1111

Shift Product = (HI, LO) right 1 bit 1010 1101 0111

2 LO[0] = 1 => ADD 1 0111 0111

Shift Product = (HI, LO) right 1 bit 1010 1011 1011

3 LO[0] = 1 => ADD 1 0101 1011

Shift Product = (HI, LO) right 1 bit 1010 1010 1101

4 LO[0] = 1 => SUB (ADD 2's comp.) 0 0000 1101

Shift Product = (HI, LO) right 1 bit 0000 0110

 Page 5 of 9

[16 Points]

(Q3) Given that Dividend=1001 and Divisor=0101.

(i) Using the refined unsigned division hardware, show the unsigned division

of Dividend by Divisor. The result of division should be stored in the

Remainder and Quotient registers. Show the steps of your work.

Iteration Remainder Quotient Divisor Difference

0 Initialize 0000 1001 0101

1 1: SLL, Difference 0001 0010 0101 1100

2: Diff < 0 => Do Nothing

2 1: SLL, Difference 0010 0100 0101 1101

2: Diff < 0 => Do Nothing

3 1: SLL, Difference 0100 1000 0101 1111

2: Diff < 0 => Do Nothing

4 1: SLL, Difference 1001 0000 0101 0100

2: Rem = Diff, set lsb Quotient 0100 0001

(ii) Using the refined unsigned division hardware, show the signed division of

Dividend by Divisor. The result of division should be stored in the

Remainder and Quotient registers. Show the steps of your work.

First, we convert the dividend into a positive number by taking its 2's complement.

Thus, the dividend becomes 0111. Then, we perform unsigned division as shown

below.

Iteration Remainder Quotient Divisor Difference

0 Initialize 0000 0111 0101

1 1: SLL, Difference 0000 1110 0101 1011

2: Diff < 0 => Do Nothing

2 1: SLL, Difference 0001 1100 0101 1100

2: Diff < 0 => Do Nothing

3 1: SLL, Difference 0011 1000 0101 1110

2: Diff < 0 => Do Nothing

4 1: SLL, Difference 0111 0000 0101 0010

2: Rem = Diff, set lsb Quotient 0010 0001

Since Quotient sign should be negative we take its 2's complement. Thus,

Quotient=1111.

Also, since remainder sign is negative, we take its 2's complement. Thus,

Remainder=1110.

 Page 6 of 9

[16 Points]

(Q4)

(i) What is the decimal value of the following single-precision floating-point

number?

0100 0011 0110 1001 1000 0100 0000 0000.

 = + (1.1101001100001000...0)2 * 2(134-127) = + (1.1101001100001000…0)2* 27

= + (11101001.100001000….0)2

= + 233.515625

(ii) Show the single-precision floating-point binary representation for: 555.9375.

555.9375=(1000101011.1111)2 = (1.0001010111111)2 * 29

Exp. = 9 +127=136

Single precision binary representation:

0100 0100 0000 1010 1111 1100 0000 0000

(iii) Perform the following floating-point operation rounding the result to the

nearest even. Perform the operation using guard, round and sticky bits.

 1100 1110 0000 0000 0000 0000 0100 0000

+ 0101 0010 0000 0000 1000 0000 0000 0000

We add three bits for each operand representing G, R, S bits as follows.

1.000 0000 1000 0000 0000 0000 000 x 237

- 1.000 0000 0000 0000 0100 0000 000 x 229

1.000 0000 1000 0000 0000 0000 000 x 237

- 0.000 0000 1000 0000 0000 0000 010 x 237 (align)

 01.000 0000 1000 0000 0000 0000 000 x 237

+ 11.111 1111 0111 1111 1111 1111 110 x 237 (2's complement)

 00.111 1111 1111 1111 1111 1111 110 x 237

= + 0.111 1111 1111 1111 1111 1111 110 x 237

= + 1.111 1111 1111 1111 1111 1111 100 x 236 (normalize)

= + 10.000 0000 0000 0000 0000 0000 x 236 (round)

= + 1.000 0000 0000 0000 0000 0000 x 237 (renormalize)

 Page 7 of 9

 [8 Points]

(Q5)

(i) Fill the following table by placing a check mark () indicating the impact of

each listed factor on the Instruction Count (I-Count), CPI and Cycle time.

 I-Count CPI Cycle

Compiler

Instruction Set Architecture (ISA)

Organization

Technology

(ii) List three problems in using MIPS as a performance metric.

Three problems using MIPS as a performance metric:

1. Does not take into account the capability of instructions. Cannot use MIPS to

compare computers with different instruction sets because the instruction count

will differ.

2. MIPS varies between programs on the same computer. A computer cannot have a

single MIPS rating for all programs.

3. MIPS can vary inversely with performance. A higher MIPS rating does not always

mean better performance.

 Page 8 of 9

[8 Points]

(Q6) Suppose that a program runs in 150 seconds on a machine, with ALU operations

responsible for 40 seconds of this time, multiply operations responsible for 50 seconds of this

time and divide operations responsible for 40 seconds of this time. The remaining time is

taken by the remaining operations. Suppose that a new implementation of the machine has

improved the execution time of the ALU by a factor of 2, the multiplier by a factor of 1.5 and

the divider by a factor of 1.6. Determine the new execution time and the speedup of the

program based on the new implementation.

Execution time of new implementation = 40/2 + 50/1.5 + 40/1.6 + 20

=20+33.33+25+20=98.33 seconds

Speedup = 150/98.33 = 1.525

 Page 9 of 9

 [16 Points]

(Q7) Given the following instruction mix of a program on a RISC processor:

Class CPI Frequency

ALU 2 40%

Branch 2 25%

Jump 1 15%

Load 4 10%

Store 3 10%

(i) What is the average CPI?

Average CPI=2*0.4 + 2*0.25+1*0.15+4*0.10+3*0.10=2.15

(ii) Assuming that the processor has a clock rate of 2 GHz, determine MIPS.

MIPS= Clock Rate / (CPI*106)=2* 109/ 2.15*106=930.23

(iii) What is the percent of time used by each instruction class?

Class Percentage of Time

ALU 2*0.4/2.15=0.8/2.15=37.21%

Branch 2*0.25/2.15=0.5/2.15=23.26%

Jump 1*0.15/2.15=0.15/2.15=6.98%

Load 4*0.10/2.15=0.4/2.15=18.60%

Store 3*0.10/2.15=0.3/2.15=13.95%

(iv) How much faster would the program run if load time is reduced to 3 cycles,

and two ALU instructions could be executed at once, assuming that the cycle

time has increased by 5% and the instruction count has increased by 10%?

New Average CPI=1*0.4 + 2*0.25+1*0.15+3*0.10+3*0.10=1.65

 Speedup = Old Execution Time / New Execution Time

 = IC * 2.15 * Cycle Time / 1.1* IC * 1.65 * 1.05 * Cycle Time

 = 2.15 / 1.1*1.65*1.05 = 2.15/1.90575=1.128

