PAGE
Page 1 of 9

 May 17, 2008
COMPUTER ENGINEERING DEPARTMENT

ICS 233
COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Major Exam II

Second Semester (072)

Time: 8:00-10:00 PM

Student Name : _KEY___

Student ID. : __

	Question
	Max Points
	Score

	Q1
	20
	

	Q2
	15
	

	Q3
	16
	

	Q4
	10
	

	Q5
	14
	

	Q6
	10
	

	Q7
	15
	

	Total
	100
	

Dr. Aiman El-Maleh
[20 Points]

(Q1) You are required to write a procedure that receives two parameters N and K in registers $a0 and $a1 and computes the result of multiplying NxN-1xN-2x…xK and stores the result in $v0. The procedure is described in a recursive way as follows:

RangeMul(N,K){ If N=K return N else return N*RangeMul(N-1,K) }

Implement the given recursive procedure, RangeMul, in MIPS assembly programming with the minimal number of instructions. Then, write a program to ask the user to enter two integers N and K and print RangeMul(N,K).

A sample execution of the program is:

Enter first integer N: 5
Enter second integer K: 3

Result is: 60
A summary of syscall services you can use is given below:

	Service
	$v0
	Arguments / Result

	Print Integer
	1
	$a0 = integer value to print

	Print String
	4
	$a0 = address of null-terminated string

	Read Integer
	5
	$v0 = integer read

################# Data segment #####################

.data

msg1: .asciiz "Enter first integer N:"

msg2: .asciiz "Enter second integer K:"

msg3: .asciiz "Result is:"

################# Code segment #####################

.text

.globl main

main:
main program entry

li $v0, 4

la $a0, msg1

syscall

li $v0, 5

syscall

move $t0, $v0

li $v0, 4

la $a0, msg2

syscall

li $v0, 5

syscall

move $a1, $v0

li $v0, 4

la $a0, msg3

syscall

move $a0, $t0

jal RangeMul

move $a0, $v0

li $v0, 1

syscall

li $v0, 10
Exit program

syscall

RangeMul:

bne $a0, $a1, Skip

move $v0, $a0

jr $ra
Skip:

addi $sp, $sp, -8

sw $a0, ($sp)

sw $ra, 4($sp)

addi $a0, $a0, -1

jal RangeMul

lw $t0, ($sp)

lw $ra, 4($sp)

addi $sp, $sp, 8

mul $v0, $v0, $t0

jr $ra

[15 Points]

(Q2) You are required to design a circuit that can be used to perform either signed or unsigned multiplication of two N-bit operands A and B depending on an input signal OP. When OP=0, the circuit will perform unsigned multiplication. Otherwise, it will perform signed multiplication. Show the algorithm that will be used with the circuit in performing the multiplication operations.

Circuit:
[image: image1.png]shift right

Algorithm:

[image: image2.png]LO=Multiplier, HI=0

t.i
<o >0

v
First N-1iterations: HI = HI + Multiplicand
Last iteration: if Op=0 HI = HI + Multiplicand
Else HI = HI - Multiplicand

¥
Shift Right Product = (HI, LO) 1 bit

Nt Repetition?.

[15 Points]

(Q3) Given that Dividend=1001 and Divisor=0100.

(i) Using the refined unsigned division hardware, show the unsigned division of Dividend by Divisor. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work.

	Iteration
	Remainder
	Quotient
	Divisor
	Difference

	0
	Initialize
	0000
	1001
	0100
	

	1
	1: SLL, Difference
	0001
	0010
	0100
	1101

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	2
	1: SLL, Difference
	0010
	0100
	0100
	1110

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	3
	1: SLL, Difference
	0100
	1000
	0100
	0000

	
	2: Rem = Diff, set lsb Quotient
	0000
	1001
	
	

	4
	1: SLL, Difference
	0001
	0010
	0100
	1101

	
	2: Diff < 0 => Do Nothing
	
	
	
	

(ii) Using the refined unsigned division hardware, show the signed division of Dividend by Divisor. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work.

First, we convert the dividend into a positive number by taking its 2's complement. Thus, the dividend becomes 0111. Then, we perform unsigned division as shown below.
	Iteration
	Remainder
	Quotient
	Divisor
	Difference

	0
	Initialize
	0000
	0111
	0100
	

	1
	1: SLL, Difference
	0000
	1110
	0100
	1100

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	2
	1: SLL, Difference
	0001
	1100
	0100
	1101

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	3
	1: SLL, Difference
	0011
	1000
	0100
	1111

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	4
	1: SLL, Difference
	0111
	0000
	0100
	0011

	
	2: Rem = Diff, set lsb Quotient
	0011
	0001
	
	

Since Quotient sign should be negative we take its 2's complement. Thus, Quotient=1111.

Also, since remainder sign is negative, we take its 2's complement. Thus, Remainder=1101.

[10 Points]

(Q4) Consider a simplified 8-bit floating point representation following the general guidelines of the IEEE format in representing normalized, denormalized, Nan, infinity and 0. Suppose that the number of bits used for the exponent is 3 and for the fraction is 4 bits.
(i) Determine the smallest and largest positive values of normalized numbers.

(ii) Determine the smallest and largest positive values of denormalized numbers.

(iii) Determine the representation used for +0 and +(.

(iv) What is the largest and smallest error in this representation?
(i)
	Number
	S
	Exp
	Fraction
	E
	Value

	Smallest normalize number
	0
	001
	0000
	1-3=-2
	1*1/4=1/4

	Largest normalize number
	0
	110
	1111
	6-3=3
	31/2=15.5

(ii)

	Number
	S
	Exp
	Fraction
	E
	Value

	Smallest denormalize number
	0
	000
	0001
	-2
	1/16*1/4=1/64

	Largest denormalize number
	0
	000
	1111
	-2
	15/64(1/4

(iii)

	Number
	S
	Exp
	Fraction

	+0
	0
	000
	0000

	+(
	0
	111
	0000

(iii)

If we consider the largest values with E=110=3, we can see that these values range from 8 to 15.5. The values in this range are: 8, 8.5, 9, 9.5 …., 15.5. Thus, the largest error is 0.5/2=0.25.

 If we consider the smallest normalized values with E=001=-2, we can see that these values range from 1/4 to 31/16. The values in this range are: 1/4=16/64, 17/64, 18/64, 19/64 …., 31/16. Thus, the smallest error is 1/64*2=1/128.

Note that the same magnitude of error occurs in the representation of denormalized numbers as they are in the range of 1/64, 2/64,..,15/64.
[14 Points]
(Q5) Given the following two floating-point numbers in single-precision format:

X=0100 0011 1000 0000 0000 0000 0000 0000

Y=1011 1000 0000 1100 0000 0000 0000 0000
(i) Determine the decimal value of the two numbers X and Y.

(ii) Perform the floating-point operation X+Y rounding the result to the nearest even, using guard, round and sticky bits. Represent the result in single-precision format.
(i) X = +(1.0)2 x 28 = 256

Y = -(1.00011)2 x 2-15 = -1.09375 x 2-15= -3.34 x 10-5

(ii)
1.000 0000 0000 0000 0000 0000 000

x 28
-
1.000 1100 0000 0000 0000 0000 000

x 2-15
First, we align by shifting it right by 23 bits and then we perform a subtraction operation:

 GRS
=
1.000 0000 0000 0000 0000 0000 000

x 28
-
0.000 0000 0000 0000 0000 0001 001
x 28
= 01.000 0000 0000 0000 0000 0000 000

x 28
+ 11.111 1111 1111 1111 1111 1110 111
x 28
= 00.111 1111 1111 1111 1111 1110 111
x 28
= +0.111 1111 1111 1111 1111 1110 111
x 28
Then, we normalize the result by shifting by one bit to the left and subtracting 1 from the exponent:

= +1.111 1111 1111 1111 1111 1101 111
x 27
Then, we round to the nearest even and we add a 1. Thus, the result will be:

= +1.111 1111 1111 1111 1111 1110 111
x 27
The result represented in single-precision format is given below:

0100 0011 0111 1111 1111 1111 1111 1110
[10 Points]
(Q6) You are going to enhance a computer, and there are two possible improvements: either make multiply instructions run four times faster than before, or make memory access instructions run two times faster than before. You repeatedly run a program that takes 100 seconds to execute. Of this time, 20% is used for multiplication, 50% for memory access instructions, and 30% for other tasks. What will the speedup be if you improve only multiplication? What will the speedup be if you improve only memory access? What will the speedup be if both improvements are made?

Speedup =1 / (f/s + (1-f))
1. Speedup due to improving multiplier alone = 1 / (0.2/4+0.8)=1/(0.05+0.8)=1/0.85=1.18

2. Speedup due to improving memory alone = 1 / (0.5/2+0.5)=1/(0.25+0.5)=1/0.75=1.33

3. Speedup due to improving multiplier & memory =

1 / (0.2/4+0.5/2+0.3)=1/(0.05+0.25+0.3)=1/0.6=1.67

 [15 Points]
(Q7) You are the lead designer of a new processor. The processor design and compiler are complete, and now you must decide whether to produce the current design as it stands or spend additional time to improve it. You discuss this problem with your hardware engineering team and arrive at the following options:

a. Leave the design as it stands. Call this base computer Mbase. It has a clock rate of 500 MHz, and the following measurements have been made using a simulator:

	Instruction Class
	CPI
	Frequency

	A
	2
	40%

	B
	3
	25%

	C
	3
	25%

	D
	5
	10%

b. Optimize the hardware. The hardware team claims that it can improve the processor design to give it a clock rate of 600 MHz. Call this computer Mopt. The following measurements were made using a simulator for Mopt:
	Instruction Class
	CPI
	Frequency

	A
	2
	40%

	B
	2
	25%

	C
	3
	25%

	D
	4
	10%

(i) What is the average CPI for each computer?
(ii) What are the MIPS ratings for Mbase and Mopt?
(iii) How much faster is Mopt more than Mbase ?

(i) Mbase CPI = 2*0.4+3*0.25+3*0.25+5*0.1=0.8+0.75+0.75+0.5=2.8

Mopt CPI = 2*0.4+2*0.25+3*0.25+4*0.1=0.8+0.5+0.75+0.4=2.45

(ii) MIPS Rate = #instructions/(Execution Time * 106)= Clk Rate/(CPI * 106)

Mbase MIPS = (500*06)/(2.8*06)=178.57

Mopt MIPS = (600*06)/(2.45*06)=244.89

(iii)
Speedup = 244.89/178.57=1.37
