
 Page 1 of 10

 August 13, 2007

COMPUTER ENGINEERING DEPARTMENT

ICS 233

COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Major Exam II

Summer Semester (063)

Time: 7:00-9:30 PM

Student Name : _KEY__

Student ID. : __

Question Max Points Score

Q1 20

Q2 16

Q3 16

Q4 14

Q5 8

Q6 16

Q7 10

Total 100

Dr. Aiman El-Maleh

 Page 2 of 10

[20 Points]

(Q1) Suppose that you are given a positive integer. You can add individual digits of this

number to get another integer. If we repeat this procedure, eventually we will end up with a

single digit. Here is an example:

 7391928 = 7+3+9+1+9+2+8 = 39

 39 = 3+9 = 12

 12 = 1+2= 3

Write a procedure, ToSDigit, that receives a positive integer in $a0 and returns a single digit

in register $v0 according to the method described above. It is required that the procedure

preserves the content of all used registers by saving and restoring them on the stack. Then,

write a program to read a positive integer from the user and display the single digit obtained

by the above procedure.

A sample execution of the program is:

Enter a number: 7391928

Result is: 3

################# Data segment #####################

.data

MSG1: .asciiz "Enter a number: "

MSG2: .asciiz "Result is: "

################# Code segment #####################

.text

.globl main

main: # main program entry

Getting the number

 li $v0, 4

 la $a0, MSG1

 syscall

 li $v0, 5

 syscall

Calling the procedure

 move $a0, $v0

 jal ToSDigit

Displaying the result

 move $t0, $v0

 li $v0, 4

 la $a0, MSG2

 syscall

 Page 3 of 10

 li $v0, 1

 move $a0, $t0

 syscall

Exit program

 li $v0, 10

 syscall

The procedure receives a positive integer in $a0 and returns a single digit in register $v0

ToSDigit:

Saving used registers on the stack

 addi $sp, $sp, -4 #saving register $t0

 sw $t0, ($sp)

 addi $sp, $sp, -4 #saving register $t1

 sw $t1, ($sp)

 addi $sp, $sp, -4 #saving register $t2

 sw $t2, ($sp)

 addi $sp, $sp, -4 #saving register $t3

 sw $t3, ($sp)

 li $t0, 10

 move $t1, $a0

Next:

 xor $t3, $t3, $t3 # Holds the sum of the digits

Compute the sum of the digits

Again:

 divu $t1, $t0

 mflo $t1 # $t1 = quotient

 mfhi $t2 # $t2 = remainder

 addu $t3, $t3, $t2

 bnez $t1, Again

Check if the sum is greater than 9

 move $t1, $t3

 bge $t1, $t0, Next

 move $v0, $t1

Restoring registers from the stack

 lw $t3, ($sp)

 addi $sp, $sp, 4 #restoring register $t3

 lw $t2, ($sp)

 addi $sp, $sp, 4 #restoring register $t2

 lw $t1, ($sp)

 addi $sp, $sp, 4 #restoring register $t1

 lw $t0, ($sp)

 addi $sp, $sp, 4 #restoring register $t0

 jr $ra

 Page 4 of 10

[

16 Points]

(Q2) Given that Multiplicand=1010 and Multiplier=1001.

(i) Using the refined unsigned multiplication hardware, show the unsigned

multiplication of Multiplicand by Multiplier. The result of the

multiplication should be an 8 bit unsigned number in HI and LO registers.

Show the steps of your work.

Iteration Multiplicand Carry Product = HI,LO

0 Initialize (LO = Multiplier) 1010 0000 1001

1 LO[0] = 1 => ADD 0 1010 1001

Shift Product = (HI, LO) right 1 bit 1010 0101 0100

2 LO[0] = 0 => Do Nothing 0 0101 0100

Shift Product = (HI, LO) right 1 bit 1010 0010 1010

3 LO[0] = 0 => Do Nothing 0 0010 1010

Shift Product = (HI, LO) right 1 bit 1010 0001 0101

4 LO[0] = 1 => ADD 0 1011 0101

Shift Product = (HI, LO) right 1 bit 0101 1010

(ii) Using the refined signed multiplication hardware, show the signed

multiplication of Multiplicand by Multiplier. The result of the

multiplication should be an 8 bit signed number in HI and LO registers. Show

the steps of your work.

Iteration Multiplicand Sign Product = HI,LO

0 Initialize (LO = Multiplier) 1010 0000 1001

1 LO[0] = 1 => ADD 1 1010 1001

Shift Product = (HI, LO) right 1 bit 1010 1101 0100

2 LO[0] = 0 => Do Nothing 1 1101 0100

Shift Product = (HI, LO) right 1 bit 1010 1110 1010

3 LO[0] = 0 => Do Nothing 1 1110 1010

Shift Product = (HI, LO) right 1 bit 1010 1111 0101

4 LO[0] = 1 => SUB (ADD 2's comp.) 0110 0 0101 0101

Shift Product = (HI, LO) right 1 bit 0010 1010

 Page 5 of 10

[

16 Points]

(Q3) Given that Dividend=1010 and Divisor=0100.

(i) Using the refined unsigned division hardware, show the unsigned division

of Dividend by Divisor. The result of division should be stored in the

Remainder and Quotient registers. Show the steps of your work.

Iteration Remainder Quotient Divisor Difference

0 Initialize 0000 1010 0100

1 1: SLL, Difference 0001 0100 0100 1101

2: Diff < 0 => Do Nothing

2 1: SLL, Difference 0010 1000 0100 1110

2: Diff < 0 => Do Nothing

3 1: SLL, Difference 0101 0000 0100 0001

2: Rem = Diff, set lsb Quotient 0001 0001

4 1: SLL, Difference 0010 0010 0100 1110

2: Diff < 0 => Do Nothing

(ii) Using the refined unsigned division hardware, show the signed division of

Dividend by Divisor. The result of division should be stored in the

Remainder and Quotient registers. Show the steps of your work.

First, we convert the dividend into a positive number by taking its 2's complement.

Thus, the dividend becomes 0110. Then, we perform unsigned division as shown

below.

Iteration Remainder Quotient Divisor Difference

0 Initialize 0000 0110 0100

1 1: SLL, Difference 0000 1100 0100 1100

2: Diff < 0 => Do Nothing

2 1: SLL, Difference 0001 1000 0100 1101

2: Diff < 0 => Do Nothing

3 1: SLL, Difference 0011 0000 0100 1111

2: Diff < 0 => Do Nothing

4 1: SLL, Difference 0110 0000 0100 0010

2: Rem = Diff, set lsb Quotient 0010 0001

Since Quotient sign should be negative we take its 2's complement. Thus,

Quotient=1111.

Also, since remainder sign is negative, we take its 2's complement. Thus,

Remainder=1110.

 Page 6 of 10

 [14 Points]

(Q4) Given the following two floating-point numbers in single-precision format:

 X=1100 0011 1100 0000 0000 0000 0000 0001

 Y=0011 1110 1000 0000 0000 0010 0011 0001

(i) Perform the floating-point operation X-Y rounding the result to the nearest

even, using guard, round and sticky bits. Represent the result in single-

precision format.

Since the sign of X is negative and the operation is subtraction, then the

effective operation is addition and the sign of the result is negative.

1.100 0000 0000 0000 0000 0001 000 x 28
+ 1.000 0000 0000 0010 0011 0001 000 x 2-2

= 1.100 0000 0000 0000 0000 0001 000 x 28
+ 0.000 0000 0010 0000 0000 0000 101 x 28

= -1.100 0000 0010 0000 0000 0001 101 x 28

Then, we round to the nearest even and we add a 1. Thus, the result will be:

 -1.100 0000 0010 0000 0000 0010 x 28

The result represented in single-precision format is given below:

 1100 0011 1100 0000 0010 0000 0000 0010

(ii) Perform the floating-point operation X*Y rounding the result to the nearest

even. Represent the result in single-precision format.

 -1.100 0000 0000 0000 0000 0001 x 28
* +1.000 0000 0000 0010 0011 0001 x 2-2

 = +1.000 0000 0000 0010 0011 0001 x 2-2
* -1.100 0000 0000 0000 0000 0001 x 28

 The result for the exponent will be 28-2=26

 To obtain the result of the fraction, we multiply the two fractions as shown below:

 100000000000001000110001

 + 100000000000001000110001

 + 100000000000001000110001

 11000000000000110100101010000000000001000110001

 Page 7 of 10

Thus, the fraction result will be equal to the following since we will have 46 bits in

the fraction part:

1.1000000000000110100101010000000000001000110001

Rounding the result to the nearest even makes us add 1 since the bit next to the least

significant bit is 1 and the remaining bits are not 0. Thus, the result of multiplication will be:

-1.100 0000 0000 0011 0100 1011 x 26

The result expressed in single-precision format is:

1100 0010 1100 0000 0000 0011 0100 1011

 Page 8 of 10

[8 Points]

(Q5) Suppose that a program runs in 150 seconds on a machine, with multiply operations

responsible for 40 seconds of this time, divide operations responsible for 60 seconds of this

time. The remaining time is taken by the remaining operations. Suppose that a new

implementation of the machine has improved the execution time of the multiplier by a factor

of 3 and the execution time of the divider by a factor of 2. Determine the new execution time

and the speedup of the program on the new implementation.

Execution time of new implementation = 40/3 + 60/2 + 50 = 93.33 seconds

Speedup = 150/93.33 = 1.607

 Page 9 of 10

 [16 Points]

(Q6) Given the following instruction mix of a program on a RISC processor:

Class CPI Frequency

ALU 3 20%

Branch 2 30%

Jump 1 25%

Load 5 15%

Store 4 10%

(i) What is the average CPI?

Average CPI=3*0.2 + 2*0.3+1*0.25+5*0.15+4*0.10=2.6

(ii) Assuming that the processor has a clock rate of 3 GHz, determine MIPS.

MIPS= Clock Rate / (CPI*106)=3* 109/ 2.6*106=1.154*103

(iii) What is the percent of time used by each instruction class?

Class Percentage of Time

ALU 3*0.2/2.6=0.6/2.6=23.07%

Branch 2*0.3=0.6/2.6=23.07%

Jump 1*0.25/2.6=0.25/2.6=9.62%

Load 5*0.15/2.6=0.75/2.6=28.85%

Store 4*0.10/2.6=0.4/2.6=15.38%

(iv) How much faster would the program run if load and store time are reduced to

3 cycles, and two ALU instructions could be executed at once, assuming that

the cycle time has increased by 10% and the instruction count has increased

by 15%?

New Average CPI=1.5*0.2 + 2*0.3+1*0.25+3*0.15+3*0.10=1.9

 Speedup = Old Execution Time / New Execution Time

 = IC * 2.6 * Cycle Time / 1.1* IC * 1.9 * 1.15 * Cycle Time

 = 2.6 / 1.1*1.9*1.15 = 2.6/2.4035=1.082

 Page 10 of 10

 [10 Points]

(Q7) Assume that a processor has four 8-bit registers: R0, R1, R2, and R3. You are required

to design a register file that allows reading the value of one of the registers specified by the

field RS[1:0] and writing into one of the registers specified by the field RD[1:0]. Show all

required control signals for the register file.

BusA

R0

R3

BusW

2x4

Decoder
RD

2

Clock RegWrite

RS

2x4
Decoder

2

8

8

8

8

8

8

R1

8

8

R2

8

0

1

2

3

0 1 2 3

8

