PAGE
Page 10 of 10

 August 13, 2007
COMPUTER ENGINEERING DEPARTMENT

ICS 233
COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Major Exam II

Summer Semester (063)

Time: 7:00-9:30 PM

Student Name : _KEY__

Student ID. : __

	Question
	Max Points
	Score

	Q1
	20
	

	Q2
	16
	

	Q3
	16
	

	Q4
	14
	

	Q5
	8
	

	Q6
	16
	

	Q7
	10
	

	Total
	100
	

Dr. Aiman El-Maleh
[20 Points]

(Q1) Suppose that you are given a positive integer. You can add individual digits of this number to get another integer. If we repeat this procedure, eventually we will end up with a single digit. Here is an example:

7391928 = 7+3+9+1+9+2+8 = 39

39 = 3+9 = 12

12 = 1+2= 3
Write a procedure, ToSDigit, that receives a positive integer in $a0 and returns a single digit in register $v0 according to the method described above. It is required that the procedure preserves the content of all used registers by saving and restoring them on the stack. Then, write a program to read a positive integer from the user and display the single digit obtained by the above procedure.

A sample execution of the program is:

Enter a number: 7391928
Result is: 3

################# Data segment #####################

.data

MSG1: .asciiz "Enter a number: "

MSG2: .asciiz "Result is: "

################# Code segment #####################

.text

.globl main

main:
main program entry

Getting the number

li $v0, 4

la $a0, MSG1

syscall

li $v0, 5

syscall

Calling the procedure

move $a0, $v0

jal ToSDigit

Displaying the result

move $t0, $v0

li $v0, 4

la $a0, MSG2

syscall

li $v0, 1

move $a0, $t0

syscall

Exit program

li $v0, 10

syscall

The procedure receives a positive integer in $a0 and returns a single digit in register $v0

ToSDigit:

Saving used registers on the stack

addi $sp, $sp, -4
#saving register $t0

sw $t0, ($sp)

addi $sp, $sp, -4
#saving register $t1

sw $t1, ($sp)

addi $sp, $sp, -4
#saving register $t2

sw $t2, ($sp)

addi $sp, $sp, -4
#saving register $t3

sw $t3, ($sp)

li $t0, 10

move $t1, $a0

Next:

xor $t3, $t3, $t3
Holds the sum of the digits

Compute the sum of the digits

Again:

divu $t1, $t0

mflo $t1

$t1 = quotient

mfhi $t2

$t2 = remainder

addu $t3, $t3, $t2

bnez $t1, Again

Check if the sum is greater than 9

move $t1, $t3

bge $t1, $t0, Next

move $v0, $t1

Restoring registers from the stack

lw $t3, ($sp)

addi $sp, $sp, 4
#restoring register $t3

lw $t2, ($sp)

addi $sp, $sp, 4
#restoring register $t2

lw $t1, ($sp)

addi $sp, $sp, 4
#restoring register $t1

lw $t0, ($sp)

addi $sp, $sp, 4
#restoring register $t0

jr $ra
[16 Points]

(Q2) Given that Multiplicand=1010 and Multiplier=1001.
(i) Using the refined unsigned multiplication hardware, show the unsigned multiplication of Multiplicand by Multiplier. The result of the multiplication should be an 8 bit unsigned number in HI and LO registers. Show the steps of your work.

	Iteration
	Multiplicand
	Carry
	Product = HI,LO

	0
	Initialize (LO = Multiplier)
	1010
	
	0000 1001

	1
	LO[0] = 1 => ADD
	
	0
	1010 1001

	
	Shift Product = (HI, LO) right 1 bit
	1010
	
	0101 0100

	2
	LO[0] = 0 => Do Nothing
	
	0
	0101 0100

	
	Shift Product = (HI, LO) right 1 bit
	1010
	
	0010 1010

	3
	LO[0] = 0 => Do Nothing
	
	0
	0010 1010

	
	Shift Product = (HI, LO) right 1 bit
	1010
	
	0001 0101

	4
	LO[0] = 1 => ADD
	
	0
	1011 0101

	
	Shift Product = (HI, LO) right 1 bit
	
	
	0101 1010

(ii) Using the refined signed multiplication hardware, show the signed multiplication of Multiplicand by Multiplier. The result of the multiplication should be an 8 bit signed number in HI and LO registers. Show the steps of your work.

	Iteration
	Multiplicand
	Sign
	Product = HI,LO

	0
	Initialize (LO = Multiplier)
	1010
	
	0000 1001

	1
	LO[0] = 1 => ADD
	
	1
	1010 1001

	
	Shift Product = (HI, LO) right 1 bit
	1010
	
	1101 0100

	2
	LO[0] = 0 => Do Nothing
	
	1
	1101 0100

	
	Shift Product = (HI, LO) right 1 bit
	1010
	
	1110 1010

	3
	LO[0] = 0 => Do Nothing
	
	1
	1110 1010

	
	Shift Product = (HI, LO) right 1 bit
	1010
	
	1111 0101

	4
	LO[0] = 1 => SUB (ADD 2's comp.)
	0110
	0
	0101 0101

	
	Shift Product = (HI, LO) right 1 bit
	
	
	0010 1010

[16 Points]

(Q3) Given that Dividend=1010 and Divisor=0100.

(i) Using the refined unsigned division hardware, show the unsigned division of Dividend by Divisor. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work.

	Iteration
	Remainder
	Quotient
	Divisor
	Difference

	0
	Initialize
	0000
	1010
	0100
	

	1
	1: SLL, Difference
	0001
	0100
	0100
	1101

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	2
	1: SLL, Difference
	0010
	1000
	0100
	1110

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	3
	1: SLL, Difference
	0101
	0000
	0100
	0001

	
	2: Rem = Diff, set lsb Quotient
	0001
	0001
	
	

	4
	1: SLL, Difference
	0010
	0010
	0100
	1110

	
	2: Diff < 0 => Do Nothing
	
	
	
	

(ii) Using the refined unsigned division hardware, show the signed division of Dividend by Divisor. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work.

First, we convert the dividend into a positive number by taking its 2's complement. Thus, the dividend becomes 0110. Then, we perform unsigned division as shown below.
	Iteration
	Remainder
	Quotient
	Divisor
	Difference

	0
	Initialize
	0000
	0110
	0100
	

	1
	1: SLL, Difference
	0000
	1100
	0100
	1100

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	2
	1: SLL, Difference
	0001
	1000
	0100
	1101

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	3
	1: SLL, Difference
	0011
	0000
	0100
	1111

	
	2: Diff < 0 => Do Nothing
	
	
	
	

	4
	1: SLL, Difference
	0110
	0000
	0100
	0010

	
	2: Rem = Diff, set lsb Quotient
	0010
	0001
	
	

Since Quotient sign should be negative we take its 2's complement. Thus, Quotient=1111.

Also, since remainder sign is negative, we take its 2's complement. Thus, Remainder=1110.

[14 Points]
(Q4) Given the following two floating-point numbers in single-precision format:

X=1100 0011 1100 0000 0000 0000 0000 0001

Y=0011 1110 1000 0000 0000 0010 0011 0001

(i) Perform the floating-point operation X-Y rounding the result to the nearest even, using guard, round and sticky bits. Represent the result in single-precision format.
Since the sign of X is negative and the operation is subtraction, then the effective operation is addition and the sign of the result is negative.
1.100 0000 0000 0000 0000 0001 000

x 28
+
1.000 0000 0000 0010 0011 0001 000

x 2-2
=
1.100 0000 0000 0000 0000 0001 000

x 28
+
0.000 0000 0010 0000 0000 0000 101
x 28
= -1.100 0000 0010 0000 0000 0001 101
x 28
Then, we round to the nearest even and we add a 1. Thus, the result will be:

 -1.100 0000 0010 0000 0000 0010

x 28
The result represented in single-precision format is given below:

1100 0011 1100 0000 0010 0000 0000 0010
(ii) Perform the floating-point operation X*Y rounding the result to the nearest even. Represent the result in single-precision format.
 -1.100 0000 0000 0000 0000 0001

x 28
* +1.000 0000 0000 0010 0011 0001

x 2-2
 = +1.000 0000 0000 0010 0011 0001

x 2-2
* -1.100 0000 0000 0000 0000 0001

x 28

The result for the exponent will be 28-2=26

To obtain the result of the fraction, we multiply the two fractions as shown below:

100000000000001000110001
 + 100000000000001000110001
 + 100000000000001000110001
 11000000000000110100101010000000000001000110001
Thus, the fraction result will be equal to the following since we will have 46 bits in the fraction part:

1.1000000000000110100101010000000000001000110001
Rounding the result to the nearest even makes us add 1 since the bit next to the least significant bit is 1 and the remaining bits are not 0. Thus, the result of multiplication will be:

-1.100 0000 0000 0011 0100 1011
x 26

The result expressed in single-precision format is:

1100 0010 1100 0000 0000 0011 0100 1011
[8 Points]
(Q5) Suppose that a program runs in 150 seconds on a machine, with multiply operations responsible for 40 seconds of this time, divide operations responsible for 60 seconds of this time. The remaining time is taken by the remaining operations. Suppose that a new implementation of the machine has improved the execution time of the multiplier by a factor of 3 and the execution time of the divider by a factor of 2. Determine the new execution time and the speedup of the program on the new implementation.
Execution time of new implementation = 40/3 + 60/2 + 50 = 93.33 seconds

Speedup = 150/93.33 = 1.607
 [16 Points]
(Q6) Given the following instruction mix of a program on a RISC processor:

	Class
	CPI
	Frequency

	ALU
	3
	20%

	Branch
	2
	30%

	Jump
	1
	25%

	Load
	5
	15%

	Store
	4
	10%

(i) What is the average CPI?
Average CPI=3*0.2 + 2*0.3+1*0.25+5*0.15+4*0.10=2.6
(ii) Assuming that the processor has a clock rate of 3 GHz, determine MIPS.

MIPS= Clock Rate / (CPI*106)=3* 109/ 2.6*106=1.154*103
(iii) What is the percent of time used by each instruction class?
	Class
	Percentage of Time

	ALU
	3*0.2/2.6=0.6/2.6=23.07%

	Branch
	2*0.3=0.6/2.6=23.07%

	Jump
	1*0.25/2.6=0.25/2.6=9.62%

	Load
	5*0.15/2.6=0.75/2.6=28.85%

	Store
	4*0.10/2.6=0.4/2.6=15.38%

(iv) How much faster would the program run if load and store time are reduced to 3 cycles, and two ALU instructions could be executed at once, assuming that the cycle time has increased by 10% and the instruction count has increased by 15%?
New Average CPI=1.5*0.2 + 2*0.3+1*0.25+3*0.15+3*0.10=1.9

Speedup = Old Execution Time / New Execution Time

 = IC * 2.6 * Cycle Time / 1.1* IC * 1.9 * 1.15 * Cycle Time

 = 2.6 / 1.1*1.9*1.15 = 2.6/2.4035=1.082

 [10 Points]
(Q7) Assume that a processor has four 8-bit registers: R0, R1, R2, and R3. You are required to design a register file that allows reading the value of one of the registers specified by the field RS[1:0] and writing into one of the registers specified by the field RD[1:0]. Show all required control signals for the register file.

[image: image1]
BusA

R0

R3

BusW

2x4

Decoder

RD

2

Clock

RegWrite

RS

2x4

Decoder

2

8

8

8

8

8

8

R1

8

8

R2

8

0

1

2

3

0

1

2

3

8

