COE 301 COMPUTER ORGANIZATION
 ICS 233: COMPUTER ARCHITECTURE \& ASSEMBLY LANGUAGE
 Term 151 (Fall 2015-2016)
 Major Exam 2
 Saturday Nov. 21, 2015

Time: 120 minutes, Total Pages: 15

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Max Points	Score
Q1	$\mathbf{1 6}$	
Q2	$\mathbf{2 0}$	
Q3	$\mathbf{2 0}$	
Q4	$\mathbf{3 0}$	
Total	$\mathbf{8 6}$	

(Q1)

(i) [6 points] A recursive procedure $\mathrm{TH}(\mathrm{N})$ returns $1+2 \mathrm{TH}(\mathrm{N}-1)$ for $\mathrm{N}>1,1$ if $\mathrm{N}=1$, and zero otherwise. This is called Tower of Hanoi. $\mathrm{TH}(\mathrm{N})$ is defined as follows:

```
int TH(int N) {
    if (N =< 0) return 0;
    else if (N=1) return 1;
    else return (1+2*TH(N-1));
}
```

Assume TH receives its argument N in register $\$ \mathrm{a} 0$ and return its results in $\$ \mathrm{v} 0$. The above procedure is called from some Main program, which needs not to be implemented here. Write a minimal MIPS program for the above procedure.
(ii) [10 points] Suppose we enter i integers $q(1), q(2), \ldots, q(i)$. The objective is to compute the result $p(i)=q(1)+\ldots+q(i)$ for each i, where p is an array of results. A better way to compute the results is $\mathrm{p}(\mathrm{i})=\mathrm{p}(\mathrm{i}-1)+\mathrm{q}(\mathrm{i})$ for $\mathrm{i}>=1$ after setting $p(0)=0$. The above function is called prefix sum. For example, if we enter 4, 3, 5, 2, 3, 0 (termination) as follows:
$\begin{array}{lllllll}\text { Order of entries } & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
Value of entries q: $4 \quad 3 \quad 5 \quad 5 \quad 2 \quad 3 \quad 0 \quad$ then the results will be:
Value of results p: 4
Assume the following strings in the data segments:
prompt-1: .asciiz "Please enter at most 100 singed integers terminating with 0 : \ln "
prompt-2: .asciiz "Prefix sum of the entered integers: \n"
Use $\$ \mathrm{~s} 0$ to store the address of array of words p as a base address and $\$ \mathrm{~s} 1$ to store the number of entered integers by the user.

Write a MIPS program with minimal instructions that carries out the following steps:

1. Print "prompt-1",
2. Reads at most 100 signed integers $q(i)$ terminated with a zero,
3. Compute the results $p(i)$ and store them in memory,
4. Print "prompt-2", and
5. Print all the results $\mathrm{p}(\mathrm{i})$.
(Q2)
(i) [10 points] You are required to design a circuit that can be used to perform signed multiplication of two 32-bit operands A and B. Show the block diagram of all used components and their sizes. Explain how the circuit will be used to perform signed multiplication by showing a flow chart or pseudo code.
(ii) [4 points] Given that Multiplicand=1001 and Multiplier=1011, using the signed multiplication hardware, show the signed multiplication of Multiplicand by Multiplier. The result of the multiplication should be an 8 bit signed number in HI and LO registers. Show the steps of your work.

Iteration		Multiplicand	Sign	Product = HI,LO
0	Initialize			
1				
2				
$2 y y y y y y$	3			
3				

(iii) [6 points] Given that Dividend=1001 and Divisor=0011 represent two 4-bit signed numbers in 2 's complement representation, using the unsigned division hardware, show the signed division of Dividend by Divisor. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work.

Iteration		Remainder $(\mathbf{H I})$	Quotient $(\mathbf{L O})$	Divisor	Difference
0	Initialize				
2					
3					
4					

(Q3)

1. [2 Points] What is the decimal value of following single precision float:

$$
\text { [1, } 10000101,01011101000000000000000]
$$

2. [2 Points] What is the decimal value of following single precision float:

$$
\text { [0, } 00000000,01000000000000000000000]
$$

3. [3 Points] Find the normalized single precision float representation of +59.25 .
4. [4 Points] Round the given single precision float with the given GRS bits using the following rounding modes showing the resulting normalized number:

GRS
$-1.11111111111111111111111100 \times 23$
Zero: []
+infinity: []
-infinity: []

Nearest Even: []
5. [5 Points] Find the normalized difference between A and B by using rounding to nearest even. Perform the operation using guard, round and sticky bits:
$\mathrm{A}=+1.00000000000000000000000 \times 2^{4}$
$\mathrm{B}=+1.11110000000000000000001 \times 2^{3}$
6. [4 Points] Find the normalized result of the operation $A+B+C$, by performing $A+B$ first followed by adding C , using rounding to nearest even. Perform the operation using guard, round and sticky bits:

```
A=+1.011 11100100000000000000000
\(\times 2^{32}\)
\(\mathrm{B}=+1.11110000000000000000000000\)
\(\times 2^{4}\)
\(\mathrm{C}=-1.01111100100000000000000000\)
\(\times 2^{32}\)
```

Is the obtained result intuitive? Justify your answer.
(i) [3 Points] The components of a Single Cycle Datapath have the following delays:

1. 150 ps for fetching the instruction from the Instruction Memory,
2. 100 ps for reading or writing the register file (in parallel with instruction decoding),
3. 50 ps for any ALU operation,
4. 200 ps for loading or storing using the data memory.

The datapath setup time is 30 ps , the hold time is 45 ps , and the clock skew time is 20 ps . Ignore the delay through the multiplexers and other logic. What is the shortest clock period for correct operation of MIPS assembly instructions. Evaluate the highest possible clock rate.
(ii) Consider the following MIPS datapath:

1. [8 Points] List the values of the datapath control signals in the following Table for each instruction.

Type	Instr.	OPCODE $\mathrm{X}_{5} \mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	RegDst	RegWrite	Ext	ALUSre	ALUCtrl	MemRead	MemWrite	MemtoReg
R	Sub	000001								
	Or	000010								
I	Addi	000100								
	Andi	000111								
	Lw	001000								
	Sw	001001								
	Beq	001100								
J	J	001110								

2. [4 Points] Design the control unit to generate the above control signals (except ALUCtrl) using the simplest logic.
(iii) [5 Points] We would like to add a new instruction to the MIPS instruction set: Addm rd, rt, rs that performs (rd) $\leftarrow \mathrm{DM}[(\mathrm{rs})]+(\mathrm{rt})$. Draw the additional changes on the MIPS datapath shown below to enable the execution of Addm instruction and give the values of all the control signals in the modified datapath by filling the given table.

RegDst	RegWrite	Ext	ALUSrc	ALUCtrl	MemRead	MemWrite	MemtoReg			

(iv) [5 Points] Assume we want to add instructions to MIPS such as: Addp rd, rt, rs that performs $(\mathrm{rd}) \leftarrow(\mathrm{rs})+(\mathrm{rt})$ if $\$ 223=1$, else register rd remains unchanged. This is called a predicated instruction that executes only if a predicate is true (register $\$ 223=1$). We assume that:

1. Control signals generated by the control unit for Addp are identical to those generated for Add rd, rt, rs instruction.
2. The Control unit generates a signal $\mathrm{S}=1$ only for predicated instructions.
3. The content of register $\$ 223$ is always output by the Registers (see the below drawing).

Draw the additional changes on the MIPS datapath to enable correct execution of Addp instruction and give the values of all the control signals in the modified datapath by filling the given table.

RegDst	RegWrite	Ext	ALUSrc	ALUCtrl	MemRead	MemWrite	MemtoReg			

(v) [5 Points] Assume that we want to add the instruction JAL to the MIPS datapath. Make all the necessary modifications to the MIPS Datapath for implementing the JAL instruction including the NextPC block. The NextPC block implementation is given below.

30 Jump or Branch Target Address

Syscall Services:

Service	$\$ v 0$	Arguments / Result
Print Integer	1	\$a0 = integer value to print
Print Float	2	$\$ f 12=$ float value to print
Print Double	3	$\$ f 12=$ double value to print
Print String	4	$\$ a 0=$ address of null-terminated string
Read Integer	5	Return integer value in \$v0
Read Float	6	Return float value in \$f0
Read Double	7	Return double value in \$f0
Read String	8	\$a0 = address of input buffer \$a1 = maximum number of characters to read
Print Char	11	\$a0 = character to print
Read Char	12	Return character read in \$v0

MIPS Instructions:

Instruction	Meaning	R-Type Format					
add \$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	$\mathrm{op}=0$	rs = \$s2	r = \$s3	rd = \$s1	sa $=0$	$\mathrm{f}=0 \times 20$
addu \$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	op $=0$	rs = \$s2	$\mathrm{rt}=$ \$s3	rd = \$s1	sa $=0$	$\mathrm{f}=0 \times 21$
sub \$s1, \$s2, \$s3	\$s1 = \$s2-\$s3	op $=0$	rs = \$s2	rt = \$s3	rd = \$s1	sa $=0$	$f=0 \times 22$
subu \$s1, \$s2, \$s3	\$s1 = \$s2-\$s3	op $=0$	rs = \$s2	$\mathrm{r}=$ \$s3	rd = \$s1	sa $=0$	$\mathrm{f}=0 \times 23$

Instruction	Meaning	R-Type Format					
and \$s1, \$s2, \$s3	\$s1 = \$s2 \& \$s3	op = 0	rs = \$s2	$\mathrm{rt}=$ \$s3	rd = \$s1	sa $=0$	$=0 \times 24$
or \$s1, \$s2, \$s3	\$s1 = \$s2 \| \$ s 3	op = 0	rs = \$s2	$\mathrm{rt}=$ \$s3	rd = \$s1	sa $=0$	$\mathrm{f}=0 \times 25$
xor \$s1, \$s2, \$s3	\$s1 = \$s2 ^ \$s3	op $=0$	rs = \$s2	$\mathrm{rt}=$ \$s3	rd = \$s1	sa $=0$	$\mathrm{f}=0 \times 26$
nor \$s1, \$s2, \$s3	\$s1 = ~(\$s2\|\$s3)	$\mathrm{op}=0$	rs = \$s2	$\mathrm{rt}=$ \$s3	rd = \$s1	sa $=0$	$\mathrm{f}=0 \times 27$

	tion	Meaning	R-Type Format					
sll	\$s1,\$s2,10	\$s1 = \$s2 << 10	op $=0$	rs $=0$	$\mathrm{rt}=$ \$s2	rd $=$ \$s1	sa $=10$	$\mathrm{f}=0$
srl	\$s1,\$s2,10	\$s1 = \$s2>>>10	op $=0$	rs $=0$	$\mathrm{rt}=$ \$s2	rd = \$s1	sa $=10$	$f=2$
sra	\$s1, \$s2, 10	\$s1 = \$s2 >> 10	op $=0$	rs = 0	$\mathrm{rt}=$ \$s2	rd $=$ \$s1	$s a=10$	$\mathrm{f}=3$
sllv	\$s1,\$s2,\$s3	\$s1 = \$s2 << \$s3	op $=0$	rs = \$s3	rt = \$s2	rd = \$s1	sa $=0$	$\mathrm{f}=4$
srlv	\$s1,\$s2,\$s3	\$s1 = \$s2>>>\$s3	op $=0$	rs = \$s3	rt = \$s2	rd = \$s1	sa $=0$	$\mathrm{f}=6$
srav	\$s1,\$s2,\$s3	\$s1 = \$s2 >> \$s3	op = 0	rs = \$s3	rt = \$s2	rd = \$s1	sa $=0$	$\mathrm{f}=7$

Instruction	Meaning	I-Type Format			
addi \$s1, \$s2, 10	\$s1 = \$s2 + 10	op $=0 \times 8$	rs = \$s2	rt = \$s1	imm ${ }^{16}=10$
addiu \$s1, \$s2, 10	\$s1 = \$s2 + 10	$\mathrm{op}=0 \times 9$	rs = \$s2	$\mathrm{rt}=$ \$s1	$\mathrm{imm}^{16}=10$
andi \$s1, \$s2, 10	\$s1 = \$s2 \& 10	op = 0xc	rs = \$s2	$\mathrm{tt}=$ \$s1	imm ${ }^{16}=10$
ori \$s1, \$s2, 10	\$s1 = \$s2 \| 10	$\mathrm{op}=0 \mathrm{xd}$	rs = \$s2	$\mathrm{rt}=$ \$s1	$\mathrm{imm}^{16}=10$
xori \$s1, \$s2, 10	\$s1 = \$s2^10	$\mathrm{op}=0 \mathrm{xe}$	rs = \$s2	$\mathrm{rt}=$ \$s1	$\mathrm{imm}^{16}=10$
lui \quad \$ 1,10	\$s1 $=10 \ll 16$	op = 0xf	0	$\mathrm{rt}=$ \$ s 1	$\mathrm{imm}^{16}=10$

Instruction	Meaning	Format				
j label	jump to label	$\mathrm{op}^{6}=2$	imm ${ }^{26}$			
beq rs, it, label	branch if ($\mathrm{rs}==\mathrm{rt}$)	$\mathrm{op}^{6}=4$	rs^{5}	rt^{5}	imm ${ }^{16}$	
bne rs, rt, label	branch if (rs != rt)	op ${ }^{6}=5$	rs ${ }^{5}$	rt^{5}	imm ${ }^{16}$	
blez rs, label	branch if ($\mathrm{rs}<=0$)	$\mathrm{op}^{6}=6$	rs^{5}	0	imm ${ }^{16}$	
bgtz rs, label	branch if ($\mathrm{rs}>0$)	op ${ }^{6}=7$	rs^{5}	0	imm ${ }^{16}$	
bltz rs, label	branch if ($\mathrm{rs}<0$)	op ${ }^{6}=1$	rs^{5}	0	imm ${ }^{16}$	
bgez rs, label	branch if ($\mathrm{rs}>=0$)	$o p^{6}=1$	rs^{5}	1	imm ${ }^{16}$	
Instruction	Meaning	Format				
slt rd, rs, rt	rd=($\mathrm{rs}<\mathrm{rt}$?1:0)	$\mathrm{op}^{6}=0$	rs ${ }^{5}$	rt ${ }^{5}$	rd5	$0{ }^{0}$ 0x2a
sltu rd, rs, it	$\mathrm{rd}=(\mathrm{rs}<\mathrm{rt}$?1:0)	$\mathrm{op}^{6}=0$	rs ${ }^{5}$	r^{5}	rd ${ }^{5}$	0 0x2b
slti $\quad \mathrm{rt}, \mathrm{rs}, \mathrm{imm}{ }^{16}$	$\mathrm{rt}=(\mathrm{rs}<\mathrm{imm}$?1:0)	Oxa	rs ${ }^{5}$	rt^{5}		imm ${ }^{16}$
sltiu rt, rs, imm ${ }^{16}$	$\mathrm{rt}=(\mathrm{rs}<\mathrm{imm}$?1:0)	Oxb	rs ${ }^{5}$	rt^{5}		imm ${ }^{16}$

Instruction	Meaning	I-Type Format			
lb rt, imm ${ }^{16}$ (rs)	rt = MEM[rs+imm ${ }^{16}$]	0x20	rs ${ }^{5}$	r^{5}	imm ${ }^{16}$
$\mathrm{lh} \mathrm{rt}, \mathrm{imm}{ }^{16}$ (rs)	rt = MEM[rs+imm ${ }^{16}$]	0×21	rs ${ }^{5}$	r^{5}	imm ${ }^{16}$
lw $\mathrm{rt}, \mathrm{imm}{ }^{16}$ (rs)	rt = MEM[rs+imm ${ }^{16}$]	0×23	rs ${ }^{5}$	rt^{5}	imm ${ }^{16}$
lbu rt, imm ${ }^{16}$ (rs)	$\mathrm{rt}=\mathrm{MEM[rs+imm}{ }^{16}$]	0×24	rs ${ }^{5}$	r^{5}	imm ${ }^{16}$
lhu $\mathrm{rt}, \mathrm{imm}{ }^{16}$ (rs)	$\mathrm{rt}=\mathrm{MEM}\left[\mathrm{rs}+\mathrm{imm}{ }^{16}\right]$	0x25	rs ${ }^{5}$	r^{5}	imm ${ }^{16}$
sb $\mathrm{rt}, \mathrm{imm}{ }^{16}$ (rs)	MEM[rs+imm $\left.{ }^{16}\right]=$ rt	0x28	rs ${ }^{5}$	rt^{5}	imm ${ }^{16}$
sh $\mathrm{rt}, \mathrm{imm}{ }^{16}$ (rs)	MEM[rs+imm $\left.{ }^{16}\right]=$ rt	0x29	rs ${ }^{5}$	rt ${ }^{5}$	imm ${ }^{16}$
sw rt, imm ${ }^{16}$ (rs)	MEM[rs+imm $\left.{ }^{16}\right]=$ rt	0x2b	rs ${ }^{5}$	r^{5}	imm ${ }^{16}$

Instruction	Meaning	Format					
jal label	\$31=PC+4, jump	$\mathrm{op}^{6}=3$			mm		
jr Rs	$\mathrm{PC}=\mathrm{Rs}$	$o p^{6}=0$	rs ${ }^{5}$	0	0	0	8
jalr Rd, Rs	$\mathrm{Rd}=\mathrm{PC}+4, \mathrm{PC}=\mathrm{Rs}$	$o p^{6}=0$	rs ${ }^{5}$	0	rd ${ }^{5}$	0	9

| Instruction | Meaning | Format | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mult Rs, Rt | $\mathrm{Hi}, \mathrm{Lo}=\mathrm{Rs} \times \mathrm{Rt}$ | $\mathrm{op}^{6}=0$ | Rs^{5} | Rt^{5} | 0 | 0 | 0×18 |
| multu Rs, Rt | $\mathrm{Hi}, \mathrm{Lo}=\mathrm{Rs} \times \mathrm{Rt}$ | $\mathrm{op}^{6}=0$ | Rs^{5} | Rt^{5} | 0 | 0 | 0×19 |
| mul Rd, Rs, Rt | $\mathrm{Rd}=\mathrm{Rs} \times \mathrm{Rt}$ | $0 \times 1 \mathrm{c}$ | Rs^{5} | Rt^{5} | Rd^{5} | 0 | 0×02 |
| div Rs, Rt | $\mathrm{Hi}, \mathrm{Lo}=\mathrm{Rs} / \mathrm{Rt}$ | $\mathrm{op}^{6}=0$ | Rs^{5} | Rt^{5} | 0 | 0 | $0 \times 1 \mathrm{a}$ |
| divu Rs, Rt | $\mathrm{Hi}, \mathrm{Lo}=\mathrm{Rs} / \mathrm{Rt}$ | $\mathrm{op}^{6}=0$ | Rs^{5} | Rt^{5} | 0 | 0 | $0 \times 1 \mathrm{~b}$ |
| mfhi Rd | $\mathrm{Rd}=\mathrm{Hi}$ | $\mathrm{op}^{6}=0$ | 0 | 0 | Rd^{5} | 0 | 0×10 |
| mflo Rd | $\mathrm{Rd}=\mathrm{Lo}$ | $\mathrm{op}^{6}=0$ | 0 | 0 | Rd^{5} | 0 | 0×12 |

