

Page 17 of 17

								
King Fahd University of Petroleum and Minerals
College of Computer Science and Engineering
Computer Engineering Department

COE 301 COMPUTER ORGANIZATION
ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE
Term 151 (Fall 2015-2016)
Major Exam 2
Saturday Nov. 21, 2015

Time: 120 minutes, Total Pages: 15

Name:_KEY__________________________ ID:__________________ Section: _______	

Notes:
· Do not open the exam book until instructed
· Answer all questions
· All steps must be shown
· Any assumptions made must be clearly stated

	Question
	Max Points
	Score

	Q1
	16
	

	Q2
	20
	

	Q3
	20
	

	Q4
	30
	

	Total
	86
	

Dr. Aiman El-Maleh
Dr. Mayez Al-Muhammad

 		 												[16 Points]
(Q1)
(i) [6 points] A recursive procedure TH(N) returns 1+2TH(N-1) for N >1, 1 if N=1, and zero otherwise. This is called Tower of Hanoi. TH(N) is defined as follows:

 		int TH(int N) {
 if (N =< 0) return 0;
 	 else if (N=1) return 1;
 else return (1 + 2*TH(N-1));
 	}

Assume TH receives its argument N in register $a0 and return its results in $v0. The above procedure is called from some Main program, which needs not to be implemented here. Write a minimal MIPS program for the above procedure.

Solution:

TH:	slti	$t0, $a0, 1	# (n< 1)?
	beq	$t0,$0, next	# if false branch to next
	li	$v0,0	 # $v0 = 0
	jr	$ra	 # return to caller
next: slti	$t0, $a0, 2	# (n < 2)?
	bne	$t0,$0,iterate	# if false branch to iterate
	li	$v0,1	 # $v0 = 1
	jr	$ra	 # return to caller

iterate:	addiu	$sp,$sp,-4	# allocate 1 word on stack
 sw	$ra,0($sp)	# save return address
	addiu	$a0,$a0,-1	# argument = n-1
	jal	TH	 # call TH(n-1)
	sll	$v0, $v0, 1 	# $v0 = 2*TH(n-1)
 addi $v0, $v0, 1 # return 1 +2*TH(n-1)
 lw	$ra,0($sp)	# restore return address
	addi	$sp, $sp, 4	# free stack frame
	jr	$ra	 # return to caller

(ii) [10 points] Suppose we enter i integers q(1), q(2), …, q(i). The objective is to compute the result p(i) = q(1) +… + q(i) for each i, where p is an array of results. A better way to compute the results is p(i) = p(i-1)+ q(i) for i >=1 after setting p(0)=0. The above function is called prefix sum. For example, if we enter 4, 3, 5, 2, 3, 0 (termination) as follows:
Order of entries 1 2 3 4 5 6
Value of entries q: 4 3 5 2 3 0 then the results will be:
Value of results p: 4 7 12 14 17
Assume the following strings in the data segments:
prompt-1:	.asciiz "Please enter at most 100 singed integers terminating with 0: \n"
 		prompt-2:	.asciiz "Prefix sum of the entered integers: \n"
Use $s0 to store the address of array of words p as a base address and $s1 to store the number of entered integers by the user.
Write a MIPS program with minimal instructions that carries out the following steps:
1. Print “prompt-1”,
2. Reads at most 100 signed integers q(i) terminated with a zero,
3. Compute the results p(i) and store them in memory,
4. Print “prompt-2”, and
5. Print all the results p(i).

Solution:
move $s2, $s0 # $s2 is pointer to array p
li $s1,0 # Current count $s1 = 0
li $s3, 100 # initialize $s3 to 100

la $a0, prompt-1 # display prompt-1 as a null-terminated string
li $v0,4 # print null-terminated string
syscall # system call

 loop1: $v0, 5 # Loop reading at most 100 integers
 syscall	
 sw $v0, 0($s2) # store q(i)
 beq $v0, $zero, comp # check if 0 integers are entered
 addi $s2, $s2, 4 # update pointer q(i)
 addi $s1, $s1, 1 # increment count
 blt $s1, $s3, loop1 # branch if count < 100

 comp: move $s2, $s0 # restore base address of p in $s2
 li $t0, 0 # initialize p(0)=0
 loop2: lw $t1, 0($s2) # load q(i)
 beq $t1, $zero, print # branch if this a terminating 0
 add $t0, $t1, $t0 # compute p(i) = p(i-1) + q(i)
 sw $t0, 0($s2) # store p(i) at location q(i)
 addi $s2, $s2, 4 # update pointer
 J loop2

 print: la $a0, prompt-2 # display prompt-2 as a null-terminated string
li $v0,4 # print null-terminated string
syscall # system call

 move $s2, $s0 # restore base address of p in $s2
 loop3: li $v0, 1 # print integer
 lw $a0, 0($s2) # load p(i)
 syscall	
 addi $s2, $s2, 4 # update pointer q(i)
 bne $a0, $zero, loop3 # continue if this is not 0 terminating integer

[20 Points]
(Q2)
(i) [10 points] You are required to design a circuit that can be used to perform signed multiplication of two 32-bit operands A and B. Show the block diagram of all used components and their sizes. Explain how the circuit will be used to perform signed multiplication by showing a flow chart or pseudo code.

[image:]

		

		

(ii) [4 points] Given that Multiplicand=1001 and Multiplier=1011, using the signed multiplication hardware, show the signed multiplication of Multiplicand by Multiplier. The result of the multiplication should be an 8 bit signed number in HI and LO registers. Show the steps of your work.

	Iteration
	Multiplicand
	Sign
	Product = HI,LO

	0
	Initialize (LO = Multiplier)
	1001
	
	0000 1011

	1
	LO[0] = 1 => ADD
	
	1
	1001 1011

	
	Shift Product = (HI, LO) right 1 bit
	1001
	
	1100 1101

	2
	LO[0] = 1 => ADD
	
	1
	0101 1101

	
	Shift Product = (HI, LO) right 1 bit
	1001
	
	1010 1110

	3
	LO[0] = 0 => Do nothing
	
	1
	1010 1110

	
	Shift Product = (HI, LO) right 1 bit
	1001
	
	1101 0111

	4
	LO[0] = 1 => SUB (ADD 2's compl)
	0111
	0
	0100 0111

	
	Shift Product = (HI, LO) right 1 bit
	
	
	0010 0011

(iii) [6 points] Given that Dividend=1001 and Divisor=0011 represent two 4-bit signed numbers in 2's complement representation, using the unsigned division hardware, show the signed division of Dividend by Divisor. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work.

Since the Dividend is negative, we take its 2's complement => Dividend = 0111
	Sign of Quotient = negative, Sign of Remainder = negative

	Iteration
	Remainder (HI)
	Quotient (LO)
	Divisor
	Difference

	0
	Initialize
	0000
	0111
	0011
	

	1
	1: SLL, Difference
	0000
	1110
	0011
	1101

	
	2: Diff < 0 => Do Nothing
	0000
	1110
	0011
	

	2
	1: SLL, Difference
	0001
	1100
	0011
	1110

	
	2: Diff < 0 => Do Nothing
	0001
	1100
	0011
	

	3
	1: SLL, Difference
	0011
	1000
	0011
	0000

	
	2: Rem = Diff, set lsb Quotient
	0000
	1001
	0011
	

	4
	1: SLL, Difference
	0001
	0010
	0011
	1110

	
	2: Diff < 0 => Do Nothing
	0001
	0010
	0011
	

Thus, the Quotient = 1110 and Remainder = 1111.

[20 Points]
(Q3)

1. [2 Points] What is the decimal value of following single precision float:

 [1, 1000 0101, 0101 1101 0000 0000 0000 000]

= - (1.0101110100000000...0)2 * 2(133-127) = - (1.0101110100000000...0)2* 26
= -1010111.01 = -87.25

1. [2 Points] What is the decimal value of following single precision float:

 [0, 0000 0000, 0100 0000 0000 0000 0000 000]

= + (0.010000000000...0)2 * 2-126 = +2-128

1. [3 Points] Find the normalized single precision float representation of +59.25.

59.25 = 111011.01 = 1.1101101* 25

 		Exponent = 5 + 127 = 132

[0, 1000 0100, 1101 1010 0000 0000 0000 000]

1. [4 Points] Round the given single precision float with the given GRS bits using the following rounding modes showing the resulting normalized number:
 GRS
 -1.111 1111 1111 1111 1111 1111 100 x 223

Zero: [-1.111 1111 1111 1111 1111 1111 x 223]

+infinity: [-1.111 1111 1111 1111 1111 1111 x 223]

-infinity: [-1.000 0000 0000 0000 0000 0000 x 224]

Nearest Even: [-1.000 0000 0000 0000 0000 0000 x 224]

1. [5 Points] Find the normalized difference between A and B by using rounding to nearest even. Perform the operation using guard, round and sticky bits:

A= + 1.00000000000000000000000 × 24
B = +1.11110000000000000000001 × 23

1.000 0000 0000 0000 0000 0000 000	x 24
-	1.111 1000 0000 0000 0000 0001 000	x 23
 01.000 0000 0000 0000 0000 0000 000	x 24
- 00.111 1100 0000 0000 0000 0000 100 x 24 (align)
 01.000 0000 0000 0000 0000 0000 000	x 24
+ 11.000 0011 1111 1111 1111 1111 100 x 24 (2's complement)
 00.000 0011 1111 1111 1111 1111 100 x 24
= + 0.000 0011 1111 1111 1111 1111 100 x 24
= + 	1.111 1111 1111 1111 1110 0000 000 x 2-2 (normalize)
= + 1.111 1111 1111 1111 1110 0000	 x 2-2 (round)

1. [4 Points] Find the normalized result of the operation A+B+C, by performing A+B first followed by adding C, using rounding to nearest even. Perform the operation using guard, round and sticky bits:

A= + 1.011 1110 0100 0000 0000 0000 000		x 232
B = +1.111 1000 0000 0000 0000 0000 000		x 24
C = - 1.011 1110 0100 0000 0000 0000 000		x 232

Is the obtained result intuitive? Justify your answer.

 1.011 1110 0100 0000 0000 0000 000		x 232
+	1.111 1000 0000 0000 0000 0000 000		x 24
	1.011 1110 0100 0000 0000 0000 000		x 232
+	0.000 0000 0000 0000 0000 0000 001		x 232 (align)
= 1.011 1110 0100 0000 0000 0000 001		x 232
Rounding the result to the nearest even gives the result:
= +1.011 1110 0100 0000 0000 0000		x 232 (round)

1.011 1110 0100 0000 0000 0000		x 232
-	1.011 1110 0100 0000 0000 0000		x 232

= +0.000 0000 0000 0000 0000 0000		x 232

Note that this number is equivalent to 0.

The result is counterintuitive because C=-A, and one expects that the result we will obtain will be equal to B. However, we got the result as 0. The main reason is that when we added A and B the result was A due to rounding as B is very small compared to A. Thus, when we add C=-A, we get 0.

[30 Points]
(Q4)

(i) [3 Points] The components of a Single Cycle Datapath have the following delays:

1. 150 ps for fetching the instruction from the Instruction Memory,
2. 100 ps for reading or writing the register file (in parallel with instruction decoding),
3. 50 ps for any ALU operation,
4. 200 ps for loading or storing using the data memory.

The datapath setup time is 30 ps, the hold time is 45 ps, and the clock skew time is 20 ps. Ignore the delay through the multiplexers and other logic. What is the shortest clock period for correct operation of MIPS assembly instructions. Evaluate the highest possible clock rate.

Solution:

The single cycle period is bounded: T =< Critical path (longest instruction execution) + Tsetup+ Thold +Tskew.

Hence, T =< (150+100+50+200+100) + 30 +45 +20 = 695 ps
The highest Clock Frequency is bounded by: CR =< 10^12 /695 Hz= 1.44 GHz

(ii) Consider the following MIPS datapath:

[image:]
1. [8 Points] List the values of the datapath controls in the following Table depending for each instruction.

	Type
	Instr.
	OPCODE
X5 X4X3 X2 X1 X0
	
RegDst
	 RegWrite
	
Ext
	
ALUSrc
	
ALUCtrl
	
MemRead
	
MemWrite
	
MemtoReg

	R
	Sub
	000001
	1
	1
	x
	0
	sub
	0
	0
	0

	
	Or
	000010
	1
	1
	x
	0
	or
	0
	0
	0

	I
	Addi
	000100
	0
	1
	1
	1
	add
	0
	0
	0

	
	Andi
	000111
	0
	1
	0
	1
	and
	0
	0
	0

	
	Lw
	001000
	0
	1
	1
	1
	add
	1
	0
	1

	
	Sw
	001001
	x
	0
	1
	1
	add
	0
	1
	x

	
	Beq
	001100
	x
	0
	x
	0
	sub
	0
	0
	x

	J
	J
	001110
	x
	0
	x
	x
	x
	0
	0
	x

[bookmark: _GoBack]

2. [4 Points] Design the control unit to generate the above control signals (except ALUCtrl) using the simplest logic.

Here are the controls:

RegDst = sub + or
RegWrite =	Not (sw + beq + j)
Ext	=	Not (andi)
ALUSrc =	Not (sub + or + Beq)
MemRead =	lw
MemWrite =	sw
MemtoReg =	lw

[image:]

(iii) [5 Points] We would like to add a new instruction to the MIPS instruction set: Addm rd, rt, rs that performs (rd) DM[(rs)]+(rt). Draw the additional changes on the MIPS datapath shown below to enable the execution of Addm instruction and give the values of all the control signals in the modified datapath by filling the given table.

[image:]

Two extra Multiplexers are needed:

a. DM Address input needs a MUX [BusA, ALUout] with control B=1 for Addm and 0 otherwise,
b. Upper Input of ALU needs a MUX[BusA, Data-out(DM)] with control A=0 for addm.

 Here is the revised datapath with the above Muxes:
[image:]
	
RegDst
	 RegWrite
	
Ext
	
ALUSrc
	
ALUCtrl
	
MemRead
	
MemWrite
	
MemtoReg
	
PCSrc
	
A
	
B

	1
	1
	x
	0
	Add
	1
	0
	0
	0
	0
	1

c. [5 Points] Assume we want to add instructions to MIPS such as: Addp rd, rt, rs that performs (rd) (rs)+(rt) if $23=1, else register rd remains unchanged. This is called a predicated instruction that executes only if a predicate is true (register $23=1). We assume that:

1. Control signals generated by the control unit for Addp are identical to those generated for Add rd, rt, rs instruction.
2. The Control unit generates a signal S=1 only for predicated instructions.
3. The content of register $23 is always output by the Registers (see the below drawing).

Draw the additional changes on the MIPS datapath to enable correct execution of Addp instruction and give the values of all the control signals in the modified datapath by filling the given table.

[image:]
Solution:

The RegWrite that is generated by the control needs to be modified (call it RegWrite+). Let’s AND the content of $23 with constant 0x1 and let the output be U. Hence, U=1 only if #23 contains 0x1. Now RegWrite+ is function of RegWrite as generated by control for the previous set of instructions, S and U. RegWrite+ is designed as follows:

 (S, U)
	RegWrite
	00
	01
	11
	10

	0
	0
	0
	0
	0

	1
	1
	1
	1
	0

Hence, RegWrite+ must be implement as RegWrite+ = RegWrite AND [Not(S) OR U] to enable implementing the predicated instructions.

[image:]

	
RegDst
	 RegWrite
	
Ext
	
ALUSrc
	
ALUCtrl
	
MemRead
	
MemWrite
	
MemtoReg
	

	1
	1
	x
	0
	r
	0
	0
	0
	

d. [5 Points] Assume we want to add the instruction JAL to the MIPS datapath. Make all the necessary modifications to the MIPS Datapath for implementing the JAL instruction including the NextPC block. The NextPC block implementation is given below.

[image:]

[image:]

Solution

JAL implement the following register transfers: $31 PC+4 and PC [PC31-28, IMM-26, 00]. We need two MUXes to implement $31 PC+4:

1. A MUX is needed to write register $31 as input address 31 on the R/W of Registers,
2. A MUX is needed to input PC+4 on BusW of Registers when JAL=1.

Since JAL and J update PC in the same way. JAL (decoder output) is to be ORed with J for updating PCSrc.

[image:]
[image:]

Syscall Services:
	
[image:]

MIPS Instructions:

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.png
Service

$v0

Arguments / Result

Print Integer 1 | $a0 = integer value to print

Print Float 2 | $f12 = float value to print

Print Double 3 | $f12 = double value to print

Print String 4 | $a0 = address of null-terminated string

Read Integer | 5 | Return integer value in $v0

Read Float 6 | Return float value in $f0

Read Double | 7 |Return double value in $f0

Read String 8 2:? = s?:;er::n:fr:zfnlﬁebru;e:haraders to read
Print Char 11 | $a0 = character to print

Read Char 12 | Return character read in $v0

image12.png
Instruction Meaning R-Type Format

add §s1, $s2, $53| $51 = 52 + §53 rs = $52rt= $s3)rd = §s1[sa = 0
addu §s1, $s2, $s3| $s1 15 = $52rt=$s3|rd = $s1[sa = 0
sub_§s1, $s2, $s3| $s1 15 = 521t =853 sa=0
subu §s1, $s2, $53] $s1 = $52 — §53 rs = $52[rt= 853 sa=0

image13.png
Instruction Meaning R-Type Format

and $s1, $52, $53 |$s1 = $52 & $s3 s =$s2|rt=$s3|rd = $s1[sa = 0|f = 0x24
or_ $s1, $s2, $53[$s1 = $52 | $53 s = $s2| $s1 =

xor_$s1, $52, $53 [$s1 = $52 * $s3 s = $s2| $s1

nor_$s1, $52, $53 | $s1 = ~($52/$53) s = $52) $s1

image14.png
sli

$s1,852,10

$s1

R-Type Format

srl

$s1,852,10

sta

$s1, $s2, 10

sliv

951,852,853

sriv.

951,852,853

srav

951,852,853

$s1=9s2 >> $s3

SR [E[E=

8|8[8(8|8(8

RN ENPRIN Y

image15.png
Instructi Meaning |-Type Format

addi__$s1, $52, 10 $52 + 10 rs = $52 ri=$s1 imm?® = 10
addiu_$s1, $52, 10 $s2+ 10 15 =$52| ri=9s1 imm? = 10
andi_$s1, $52, 10 | $51 =952 & 10 15 =$52| ri=9s1 imm® = 10
ori_ $s1, 852,10 $521 10 15 =$52| ri=59s1 imm® = 10
xori__$s1, $52, 10 $52"10 15 = $52| ri=9s1 imm® = 10
i $s1,10 $s1=10<<16 0 [rt=8s1 imm™ =10

image16.png
Meaning Format

j label jump to label 2 imm28

beq rs, i, label |branchif (rs ==rt) [opf=4 | rs® | rt5 imm?1®
bne rs, i, label |branchif (rs!=rt) |opf=5| rs® | rt5 imm?1®
blez rs,label |branchif (rs<=0) |op®=6| rs® | 0 imm?®
bgtz rs,label |branchif(rs>0) |opf=7| rs® | 0O imm?10
bltz rs,label |branchif(rs<0) |opf=1|rs® | O imm?1e
bgez rs, label |branchif (rs>=0) |opf=1| rs® | 1 imm?®

image17.png
Instruction Meaning Format

sit rd,rs, it rd=(rs<rt?1:0) rso | 5 [rd® | 0 | Ox2a
sltu rd, rs, it rd=(rs<rt?1:0) rso | 5 [rd® | 0 | Ox2b
sl rt, rs, imm| rt=(rs<imm?1:0) rsd | o imm?1°
sltiu_rt, rs, imm?| rt=(rs<imm?1:0) rsd | o imm?1°

image18.png
Instruction Meaning |-Type Format
I rt, imm'®(rs) | rt = MEM[rs+imm'] | 0x20 | rs® i imm®

th rt, imm'®(rs) | rt = MEM[rs+imm?] | 0x21 | rs® i imm?®

Iw_rt, imm®(rs) | rt = MEM[rs+imm'6] | 0x23 | rs® i imm1®

1t = MEM[rs+imm®] | 0x24 | rs5 | 16 imms

sb _rt, immS(rs) | MEM[rs+imm™] =rt | 0x28 | rs® i imm?®

sh rt, imm'S(rs) | MEM[rs+imm™] =rt | 0x29 | rs® i imm?®

(rs)
(rs)
(rs)
(rs)
Ihu_t, imm&(rs) [rt = MEM(rs+immé] | 0x25 | rs5 | rtf imme
(rs)
(rs)
(rs)

sw_rt, imm?S(rs) | MEM[rs+imm®] =rt | Ox2b | rs® i imm?®

image19.png
Instruction Format

jal__label $31=PC+4, jump [opf=3 imm28

ir Rs PC=Rs op®=0] rsd 0 [} 8
jalr _Rd, Rs [Rd=PC+4, PC=Rs | 0p®=0 | rs® rd®| 0 9

image20.png
Instruction Meaning Format

mult Rs, Rt Hi,Lo=Rs xRt Rt® 0 0 0x18
multu Rs, Rt Hi,Lo=Rs xRt Rt> 0 0 0x19
mul Rd,Rs, Rt |Rd=Rs xRt Rt" |Rd® | 0 0x02
div._Rs Rt Hi,Lo=Rs /Rt Rt | 0 0 Ox1a
divu Rs, Rt Hi,Lo=Rs /Rt Rt> 0 0 0x1b
mfhi Rd Rd =Hi 0 |Rd®| 0O 0x10
mflo Rd Rd =Lo 0 |[Rd®| 0O 0x12

image1.png
< ALU produces 32-bit result + Sign bit

<+ Sign bit set as follows: HI =0, LO = Multipier

< No overflow = Extend sign-bit of result

<~ Overflow = Invert sign-bit of result -

First 31 terations: HI = HI + Multiplicand

32 bits 32bits Last iteration: HI = HI — Multiplicand

Shift Right (Sign, HI, LO) 1 bit

No
21 Repetition
v

Yes

shift right

Lolol

image2.emf

image3.emf

