
 Page 1 of 8

 Nov. 13, 2008

COMPUTER ENGINEERING DEPARTMENT

ICS 233

COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Major Exam I

First Semester (081)

Time: 1:00-3:00 PM

Student Name : _KEY__

Student ID. : __

Question Max Points Score

Q1 35

Q2 20

Q3 15

Q4 30

Total 100

Dr. Aiman El-Maleh

 Page 2 of 8

 [35 Points]

(Q1) Fill in the blank in each of the following questions:

(1) The smallest (negative) number that can be represented using 16-bit 2`s

complement in hexadecimal is 8000 and the largest positive number in

hexadecimal is 7FFF.

(2) Assuming 8-bit representation of numbers, the hexadecimal number 8E is equal to

142 as unsigned number and -114 in 2`s complement representation.

(3) Assuming variable Array is defined as shown below:

Array: .word 0x000000A0, 0x000000B0

The content of register $t0 after executing the following sequence of

instructions is 000000B0.

la $t0, Array

lw $t0, 4($t0)

(4) With a 32-bit address bus and 32-bit data bus, the maximum memory size than

can be accessed by a processor is 232=4G Byte and the maximum number of bytes

that can be read or written in a single cycle is 32/8=4 Bytes.

(5) Given a magnetic disk with the following properties:

 Rotation speed = 8000 RPM (rotations per minute)

 Average seek = 7 ms, Sector = 1024 bytes, Track = 250 sectors

The average time to access a block of 200 consecutive sectors is 16.75

ms.

Average access time = Seek Time + Rotation Latency + Transfer Time

 Rotations per second = 8000/60 =133.33 RPS

 Rotation time in milliseconds = 1000/133.33 = 7.5 ms

 Rotation Latency = 7.5/2 = 3.75 ms

Time to transfer 200 sectors = (200/250)* 7.5 = 6 ms

Average access time = 7 + 3.75 + 6 = 16.75 ms.

 Page 3 of 8

(6) Assuming the following data segment, and assuming that the first variable X is

given the address 0x10010000, then the addresses for variable Y and Z will be

0x10010006 and 0x1001000C.

.data

X: .byte 1, 2, 3, 4, 5

Y: .half 6, 7

Z: .word 8

(7) Assume that the CPU has just read a 32-bit instruction from the address

0x00400000. Then, the address of the next instruction that this CPU is going to

read is 0x00400004.

(8) Assume that the instruction j NEXT is at address 0x00400030 in the text segment,

and the label NEXT is at address 0x004000a8. Then, the address stored in the

assembled instruction for the label NEXT is 0x004000a8/4=0x010002a.

(9) Assume that the instruction bne $t0, $t1, NEXT is at address 0x00400030 in the

text segment, and the label NEXT is at address 0x004000a8. Then, the address

stored in the assembled instruction for the label NEXT is (0x004000a8-

0x00400034)/4=0x00400074/4= 0x001d.

(10) Assuming that $a0 contains an Alphabetic character, the instruction ori $a0,

$a0, 0x20 will guarantee that the character in $a0 is always a lower case character.

Note that the ASCII code of character ‘A’ is 0x41 while that of character ‘a’ is

0x61.

 Page 4 of 8

(11) Assume you are in a company that will market a certain IC chip. The cost per

wafer is $2000, and each wafer can be diced into 200 dies. The die yield is 80%.

Then the cost per good die is $2000/(200*0.8)=$2000/160=$12.5.

(12) Assembly language produces more compact and more efficient code than high-

level language.

(13) Cache memory is faster than random access memory but it is slower than

registers .

(14) The instruction set architecture of a processor consists of the instruction set,

programmer-accessible registers and memory.

(15) The difference between slt and sltu instructions is that slt is used for signed

comparison while sltu is used for unsigned comparison.

 Page 5 of 8

[20 Points]

 (Q2) Using only basic MIPS instructions, write the shortest sequence of instructions to

implement each of the following pseudo instructions:

1. andi $t0, 0x12345678 #$t0 is anded with the 32-bit value 0x12345678

lui $at, 0x1234

 ori $at, $at, 0x5678

 and $t0, $t0, $at

2. bge $t0, $t1, Next # branch to Next if $t0 is greater than or equal to $t1

slt $at, $t0, $t1

 beq $at, $0, Next

3. bgt $t0, 100, Next # branch to Next if $t0 is greater than 100

slti $at, $t0, 101

 beq $at, $0, Next

4. neg $t0, $t1 #$t0 is loaded with the negative value of $t1

sub $t0, $0, $t1

5. rol $t0, $t0, 12 #$t0 is rotated to the left by 12 bits and stored in $t0

srl $at, $t0, 20

 sll $t0, $t0, 12

 or $t0, $t0, $at

 Page 6 of 8

 [15 Points]

(Q3) Answer the following questions. Show how you obtained your answer:

(i) Determine the content of register $s1 after executing the following code:

 ori $s1, $zero, 4

sll $t0, $s1, 4

 sub $t0, $t0, $s1

 sra $t1, $s1, 2

 add $s1, $t0, $t1

The content of $s1=61=0x3d. The code computes the result of multiplying the content

of $s1 by 15.25 = 4*15.25=61.

(ii) Determine the content of register $t2 after executing the following code:

li $s1, 0x1b

and $t2, $zero, $t2

Next:

 andi $t1, $s1, 1

 add $t2, $t2, $t1

 srl $s1, $s1, 1

 bne $s1, $0, Next

The content of $t2=4=0x4. The code counts the number of 1's in register $s1.

(iii) Given that TABLE is defined as: TABLE: .word 1, 10, -4, 5, 20, 3

Determine the content of registers $t2 after executing the following code:

 la $t0, TABLE

 li $t1, 6

 lw $t2, ($t0)

loop: addi $t0, $t0, 4

 lw $t3, ($t0)

 ble $t3, $t2, skip

 move $t2, $t3

skip: addi $t1, $t1, -1

 bne $t1, $0, loop

The content of $t2=20=0x14. The code finds the maximum value in Table and stores

it in $t2.

 Page 7 of 8

[30 Points]

(Q4) Merge sort is a technique to combine two sorted arrays. Merge sort takes two sorted

input arrays X and Y, say of size m and n, and produces a sorted array Z of size m+n that

contains all elements of the two input arrays. The pseudo code of merge sort is as follows:

 MergeSort (X, Y, Z, m, n)

 i:=0 {index variables for arrays X, Y, and Z}

 j:=0

k:=0

 while (i<m)AND (j<n)

 if (X[i]  Y[j]) then

Z[k]:=X[i]

k:=k+1

i:=i+1

 else

Z[k]:=Y[j]

k:=k+1

j:=j+1

 end if

 end while

 if (i<m) then

 while (i<m)

Z[k]:=X[i]

k:=k+1

i:=i+1

 end while

 else

 while (j<n)

Z[k]:=Y[j]

k:=k+1

j:=j+1

 end while

 end if

 end MergeSort

Write a MIPS assembly program to implement MergeSort to merge sort two arrays of

integers (i.e. 32-bit signed numbers) in an ascending order. Assume that the address of X

array, Y array and Z array are stored in registers $s0, $s1 and $s2, respectively. Also, assume

that m, the size of array X, is stored in register $s3 and n, the size of array Y, is stored in

register $s4. Your code should not change the content of registers $s0-$s4 after execution.

 li $t0, 0 # i =0

 li $t1, 0 # j =0

 li $t2, 0 # k =0

While1:

 bgeu $t0, $s3, Endwhile1 # while (i<m) AND (j<n)

 Page 8 of 8

 bgeu $t1, $s4, Endwhile1

sll $t3, $t0, 2 # get X[i] and store in $t3

 add $t3, $t3, $s0

 lw $t3, ($t3)

 sll $t4, $t1, 2 # get Y[j] and store in $t4

 add $t4, $t4, $s1

 lw $t4, ($t4)

 sll $t5, $t2, 2 # compute address of Z[k]

 add $t5, $t5, $s2

 bgt $t3, $t4, Else1 # if (X[i] <= Y[j]) then

 sw $t3, ($t5) # Z[k]:=X[i]

 addi $t2, $t2, 1 # k:=k+1

 addi $t0, $t0, 1 # i:=i+1

 j Endif1

Else1:

 sw $t4, ($t5) # Z[k]:=Y[j]

 addi $t2, $t2, 1 # k:=k+1

 addi $t1, $t1, 1 # j:=j+1

Endif1:

 j While1

Endwhile1:

 bgeu $t0, $s3, Else2 # if (i<m) then

While2:

 bgeu $t0, $s3, Endwhile2 # while (i<m)

 sll $t3, $t0, 2 # get X[i] and store in $t3

 add $t3, $t3, $s0

 lw $t3, ($t3)

 sll $t5, $t2, 2 # Z[k]:=X[i]

 add $t5, $t5, $s2

 sw $t3, ($t5)

 addi $t2, $t2, 1 # k:=k+1

 addi $t0, $t0, 1 # i:=i+1

 j While2

Endwhile2:

 j Endif2

Else2:

While3:

 bgeu $t1, $s4, Endwhile3 # while (j<n)

 sll $t4, $t1, 2 # get Y[j] and store in $t4

 add $t4, $t4, $s1

 lw $t4, ($t4)

 sll $t5, $t2, 2 # Z[k]:=Y[j]

 add $t5, $t5, $s2

 sw $t4, ($t5)

addi $t2, $t2, 1 # k:=k+1

 addi $t1, $t1, 1 # j:=j+1

 j While3

Endwhile3:

Endif2:

