
 Page 1 of 11

 March 27, 2008

COMPUTER ENGINEERING DEPARTMENT

ICS 233

COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Major Exam I

Second Semester (072)

Time: 1:00-3:30 PM

Student Name : _KEY___

Student ID. : __

Question Max Points Score

Q1 30

Q2 15

Q3 15

Q4 20

Q5 20

Total 100

Dr. Aiman El-Maleh

 Page 2 of 11

 [30 Points]

(Q1) Fill in the blank in each of the following questions:

(1) The smallest (negative) number that can be represented using 32-bit 2`s

complement in hexadecimal is 80000000 and the largest positive number in

hexadecimal is 7FFFFFFF.

(2) Assuming 8-bit representation of numbers, the binary number 10101110 is equal

to -46 in sign-magnitude representation, -81 in 1`s complement representation, and

-82 in 2`s complement representation.

(3) Two advantages of programming in assembly language are accessibility to

hardware resources and space and time efficiency.

(4) The advantage of dynamic RAM over static RAM is that it is denser and cheaper

but the disadvantage is that it is slower as it requires refreshing.

(5) Cache memory is used to bridge the widening speed gap between CPU and main

memory.

(6) Memory hierarchy consists of the following from highest speed to lowest speed:

Registers, L1 Cache, L2 Cache, Main Memory (RAM), and Hard Disk.

(7) The following assembler directive allocates 20 words initialized by 5.

X: .word 5:20

 Page 3 of 11

(8) With a 36-bit address bus and 64-bit data bus, the maximum memory size than

can be accessed by a processor is 236=64G Byte and the maximum number of

bytes that can be read or written in a single cycle is 64/8=8 Bytes.

(9) Given a magnetic disk with the following properties:

 Rotation speed = 7200 RPM (rotations per minute)

 Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

The average time to access a block of 100 consecutive sectors is 16.34

ms.

Average access time= Seek Time + Rotation Latency + Transfer Time

 Rotations per second=7200/60 =120 RPS

 Rotation time in milliseconds=1000/120=8.33 ms

Time to transfer 100 sectors=(100/200)* 8.33=4.17 ms

Average access time=8 + 4.17 + 4.17=16.34 ms.

(10) Assuming the following data segment, and assuming that the first variable X is

given the address 0x10010000, then the addresses for variable Y and Z will be

0x10010004 and 0x1001000C.

.data

X: .byte 1, 2, 3

Y: .half 4, 5, 6

Z: .word 7, 8, 9

 Page 4 of 11

(11) The code given below prints the statement: ICS 233is so easy!!. Note that the

ASCII code for the line feed character is 10 and the ASCII code for the carriage

return character is 13.

MSG: .ascii "Exam1" ,13

 .ascii " ICS 233"

 .ascii "is so easy !!",0

 li $v0, 4

 la $a0, MSG

 syscall

(12) Assume that the instruction j NEXT is at address 0x00401FC4 in the text

segment, and the label NEXT is at address 0x0040003C. Then, the address stored

in the assembled instruction for the label NEXT is 0x010000F.

0x0040003C/4=0x010000F.

(13) Assume that the instruction beq $t0, $t1, NEXT is at address 0x00401FC4 in

the text segment, and the label NEXT is at address 0x0040003C. Then, the

address stored in the assembled instruction for the label NEXT is 0xF81D.

(Next-(PC+4))/4=(0x0040003C -0x00401FC8)/4=0xFFFFE074/4=0xF81D.

(14) Assuming that $a0 contains an Alphabetic character, the instruction ori $a0,

$a0, 0x20 will guarantee that the character in $a0 is lower case character. Note

that the ASCII code of character ‘A’ is 0x41 while that of character ‘a’ is 0x61.

(15) Assume that you are in a company that will market a certain IC chip. The cost

per wafer is $3000, and each wafer can be diced into 2000 dies. The cost per good

die is $3. Then, the yield of this manufacturing process is 50%.

Cost per die = $3 = 3000 / (Y *2000). Thus, Y =3000 / 3 * 2000 = 50%.

 Page 5 of 11

[15 Points]

(Q2) Using only basic MIPS instructions, write the shortest sequence of instructions to

implement each of the following pseudo instructions:

1. sgt $t0, $t1, $t2 #$t0 is set to 1 if $t1 is greater than $t2

slt $t0, $t2, $t1

2. move $t0, $t1 # $t0 = $t1

addu $t0, $0, $t1

3. ble $t0, 5, Next # branch to Next if $t0 is less than or equal 5

slti $at, $t0, 6

bne $at, $0, Next

4. abs $t0, $t1 #$t0 is loaded with the absolute value of $t1

sra $at, $t1, 31

xor $t0, $at, $t1

subu $t0, $0, $at

5. ror $t0, $t0, 8 #$t0 is rotated to the right by 8 bits and stored in $t0

sll $at, $t0, 24

srl $t0, $t0, 8

or $t0, $t0, $at

 Page 6 of 11

 [15 Points]

(Q3) Answer the following questions. Show how you obtained your answer:

(i) Given that TABLE is defined as: TABLE: .word 1, -1, 2, 50, -20, 16

Determine the content of registers $v0 and $v1 after executing the following

code:

 la $a0, TABLE

 addi $a1, $a0, 20
 move $v0, $a0

 lw $v1, 0($v0)

 move $t0, $a0

loop: addi $t0, $t0, 4

 lw $t1, 0($t0)

 bge $t1, $v1, skip

 move $v0, $t0

 move $v1, $t1

skip: bne $t0, $a1, loop

This program finds the minimum value in TABLE and stores it in $v1 along with its

address in $v0. Thus, $v1=-20 and $v0=address of TABLE+16.

(ii) Given that TABLE is defined as shown below, determine what will be printed by

the following program:

TABLE: .ascii "0123456789ABCDEF"

 li $t0, 0x12EF67DC

 li $t3, 8

loop:

 rol $t0, $t0, 4

 andi $a0,$t0, 15

 la $t1, TABLE

 addu $t1, $t1, $a0

 lb $t1, 0($t1)

 move $a0, $t1

 li $v0, 11

 syscall

 sub $t3, $t3, 1

bne $t3, $zero, loop

This program prints the hexadecimal content of register $t0. Thus, it will print

12EF67DC.

 Page 7 of 11

(iii) Given that Array is defined as shown below, determine the content of Array

after executing the following code:

Array: .byte 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

 la $a0, Array

 li $a1, 4

 li $a2, 0

 li $a3, 2

 mul $t0, $a1, $a2

 add $t0, $t0, $a0

 mul $t1, $a1, $a3

 add $t1, $t1, $a0

Next:

 lb $t3, ($t0)

 lb $t4, ($t1)

 sb $t3, ($t1)

 sb $t4, ($t0)

 addi $t0, $t0, 1

 addi $t1, $t1, 1

 addi $a1, $a1, -1

 bnez $a1, Next

This program swaps the two rows in $a2 and $a3. $a1 contains the number of

columns. Thus, the content of Array becomes:

9, 10, 11, 12, 5, 6, 7, 8, 1, 2, 3, 4

 Page 8 of 11

[20 Points]

(Q4) Write separate MIPS assembly programs to do each of the following using the smallest

possible number of instructions.

(i) Multiply the content of register $s1 by 15.25.

 sll $t0, $s1, 4 #t0=$s1*16

 sub $t0, $t0, $s1 # $t0=$s1*15

 sra $t1, $s1, 2 #$t1=$s1*1/4=$s1*0.25

 add $t1, $t0, $t1 # $t1=$s1*15.25

(iii) Count the number of 1's in register $s1.

 xor $t2, $t2, $t2 #$t2=0 will hold the number of 1's

Next:

 andi $t1, $s1, 1

 add $t2, $t2, $t1

 srl $s1, $s1, 1

 bne $s1, $0, Next

(iii) Ask the user to enter a character, c1. Then, in a new line ask the user to enter

another character, c2, greater than the first character. Then, in a new line print the

characters from character c1 until character c2 as shown in the format below. If

the entered character is smaller than the first character ask the user to reenter the

second character.

Enter a character: B

Enter another character greater than B: A

Enter another character greater than B: G

The range of entered characters is: B C D E F G

################# Data segment #####################

.data

msg1: .asciiz "Enter a character:"

msg2: .ascii "Enter another character greater than "

char: .byte 0,':',0

msg3: .asciiz "The range of entered characters is: "

################# Code segment #####################

.text

.globl main

main: # main program entry

Print msg1 asking the user to enter a character

 la $a0, msg1

 li $v0, 4

 syscall

 Page 9 of 11

Read character & Store it

 li $v0, 12

 syscall

 move $s0, $a0

 la $t0, char

 sb $a0, ($t0)

Print msg2 asking the user to enter another character

Again:

 la $a0, msg2

 li $v0, 4

 syscall

Read 2nd character & Store it

 li $v0, 12

 syscall

 move $s1, $a0

Check if 2nd character is greater than 1st character

 ble $s1, $s0, Again

Print msg3 to print the range of entered character

 la $a0, msg3

 li $v0, 4

 syscall

Print the characters in the range

 li $v0, 11

Next:

 move $a0, $s0

 syscall

 li $a0, ' '

 syscall

 addi $s0, $s0, 1

 ble $s0, $s1, Next

 Page 10 of 11

[20 Points]

(Q5) Write a MIPS assembly program, BinarySearch, to search an array which has been

previously sorted in an ascending order. Each element in the array is a 32-bit signed integer.

Assume that the address of the array to be searched in stored in $a0, the size (number of

elements) of the array is stored in $a1, and the number to be searched is stored in $a2. If the

number is found then the program returns in $v0 register the position of the number in the

array. Otherwise, 0 is returned in $v0.

The pseudocode for the BinarySearch algorithm is given below:

 BinarySearch (array, size, number) {

 lower = 0;

 upper = size-1;

 while (lower <= upper) {

 middle = (lower + upper)/2;

 if (number == array[middle])

 return middle;

 else if (number < array[middle])

 upper = middle–1;

 else

 lower = middle+1;

 }

 return 0;

}

################# Data segment #####################

.data

Array: .word 1, 2, 3, 4, 5, 6, 7, 8

################# Code segment #####################

.text

.globl main

main: # main program entry

 la $a0, Array

 li $a1, 8 # Number of elements in the array

 li $a2, 6 # Number to be searched

 xor $t0, $t0, $t0 # lower=0

 addi $t1, $a1, -1 # upper=size-1

While:

 bgt $t0, $t1, EndWhile

 addu $t2, $t0, $t1 # middle = (lower + upper)/2;

 srl $t2, $t2, 1

 sll $t3, $t2, 2 # compute address of middle

 add $t3, $t3, $a0

 lw $t4, ($t3) # array[middle]

 Page 11 of 11

 bne $a2, $t4, Elseif # if (number == array[middle])

 move $v0, $t2 # return middle;

 j Done

Elseif:

 bge $a2, $t4, Else # else if (number < array[middle])

 addi $t1, $t2, -1 # upper = middle–1

 j While

Else:

 addi $t0, $t2, 1 # lower = middle+1

 j While

EndWhile:

 li $v0, 0

Done:

