KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COLLEGE OF COMPUTER SCIENCES & ENGINEERING

ICS 233 Computer Architecture & Assembly Language Term 072 Lecture Breakdown

	Date	Topics	Ref.
1	S 16/2	Syllabus introduction. High-Level, Assembly-,	Chapter 1: Computer
		and Machine-Languages, Advantages of High-	Abstractions and
		Level Languages, Why Learn Assembly	Technology
		Language?	
2	M 18/2	Assembly and Machine Language, Compiler and	Chapter 1: Computer
		Assembler, Instructions and Machine Language,	Abstractions and
		Instruction Fields, Advantages of High-Level	Technology
		Languages, Why Learn Assembly Language?	
		Assembly vs. High-Level Languages, Assembly	
		Language Programming Tools, Assemble and Link Process, Components of a Computer	
		System, Input Devices, Output Devices,	
		Memory, Address Space.	
3	W 20/2	Memory Devices: RAM, DRAM, SREAM,	Chapter 1: Computer
3	W 20/2	ROM, Magnetic Disk Storage, Processor-	Chapter 1: Computer Abstractions and
		Memory Performance Gap, Memory Hierarchy,	Technology
		Address, Data, and Control Bus, Processor:	recimology
		Datapath, Control, Program Counter, Instruction	
		Register, Fetch-Execute Cycle.	
4	S 23/2	Manufacturing Process, Effect of Die Size on	Chapter 1: Computer
		Yield, Technology Improvements,	Abstractions and
		Programmer's View of a Computer System.	Technology &
		Positional Number Systems, Binary and	Chapter 3: Arithmetic
		Hexadecimal Numbers, Base Conversions.	for Computers (3.1-
			3.3)
5	M 25/2	Integer Storage Sizes, Binary and Hexadecimal	Chapter 3: Arithmetic
		Addition, Signed Integers and 2's Complement	for Computers (3.1-
		Notation, Sign Extension.	3.3) & Chapter 3:
			Number Systems (Britton Book)
	W 07/2	Two's Complement of a Hexadecimal, Binary &	Chapter 3: Arithmetic
6	W 27/2	Hexadecimal Subtraction, Ranges of Signed	for Computers (3.1-
		Integers, Carry and Overflow. (Quiz#1)	3.3) & Chapter 3:
		integers, carry and overnow. (Quizmi)	Number Systems
			(Britton Book)
7	S 1/3	Carry and Overflow, Character Storage	Chapter 2:
'	01/3	ASCII Code. Parity Bit. Instruction Set	Instructions:
		Architecture (ISA).	Language of the
			Computer (2.1-2.5) &

	I	T	
			Chapter 1: The MIPS
			Architecture (Britton
			Book)
8	M 3/3	Overview of the MIPS Processor, MIPS,	Chapter 2:
		General-Purpose Registers, MIPS Registers,	Instructions:
		Conventions, Instruction Formats, Instruction	Language of the
		Categories. R-Type Arithmetic, Logical, and	Computer (2.1-2.5) &
		Shift Instructions, Integer Add /Subtract	Chapter 1: The MIPS
		Instructions.	Architecture (Britton
			Book)
9	W 5/3	Logical Bitwise Instructions: AND, OR, XOR,	Chapter 2:
		NOR, Shift Instructions: sll, srl sra, sllv, srlv,	Instructions:
		srav. (Quiz#2)	Language of the
			Computer (2.1-2.5)
10	S 8/3	Use of shift instructions in performing	Chapter 2:
	2 0, 2	multiplication and division. I-Type Format, I-	Instructions:
		Type ALU Instructions, 32-bit Constants,	Language of the
		Applications of logical instructions. J-Type	Computer (2.1-2.6)
		Format.	
11	M 10/3	J-Type Format, Conditional Branch Instructions,	Chapter 2:
	111 10/5	Set on Less Than Instructions, Pseudo-	Instructions:
		Instructions. Translating an IF Statement,	Language of the
		Compound Expression with AND.	Computer (2.6) &
			Chapter 2: Algorithm
			Development in
			Pseudo code &
			Appendix A (Britton
			Book)
12	W 12/3	Compound Expression with OR, Signed &	Chapter 2:
12	VV 12/3	Unsigned Comparison. Load and Store	Instructions:
		Instructions: Load and Store Word, Load and	Language of the
		Store Byte and Halfword, Translating a WHILE	Computer
		Loop.	(2.6, 2.8, 2.9)
			Chapter 2: Algorithm
			Development in
			Pseudocode (Britton
			Book)
12	0.15/2	Translating a WHILE Loop, Using Pointers to	Chapter 2:
13	S 15/3	Traverse Arrays, Copying a String. (Quiz#3)	Instructions:
		Travelse riffuys, copying a buing. (Quiens)	Language of the
			Computer
			(2.6, 2.8, 2.9)
			Chapter 2: Algorithm
			Development in
			Pseudocode (Britton
			Book)
1.4	N. 17/2	Copying a String, Summing an Integer Array,	Chapter 2:
14	M 17/3	Addressing Modes, Branch / Jump Addressing	Instructions:
		PC-Relative Addressing.	
		re-relative Addressing.	Language of the

	1		
			Computer
			(2.6, 2.8, 2.9)
			Chapter 2: Algorithm
			Development in
			Pseudocode
			(Britton Book)
15	W 19/3	Branch / Jump Addressing Modes, Jump and	Chapter 2:
		Branch Limits, PC-Relative Addressing.	Instructions:
		Summary of RISC Design, Assembly Language	Language of the
		Statements, Instructions, Comments, Program	Computer (2.9)
		Template, .DATA, .TEXT, & .GLOBL	Appendix A.9-A.10
		Directives, Data Definition Statement, Data Directives: .Byte.	& Appendix A (Britton Book)
16	S 22/3	Data Directives: .Byte, .Half, .Word, .Float,	Appendix A.9-A.10
	5 22/3	.double, String Directives: .Ascii, .Aciiz, .Space,	& Appendix A
		Examples of Data Definitions, Memory	(Britton Book)
		Alignment, Byte Ordering and, Big & Little	(======================================
		Endians, System Calls, Reading and Printing an	
		Integer, Reading and Printing a String, Reading	
		and Printing a Character, Sum of Three Integers	
		Program.	
17	M 24/3	Case Conversion Program, Procedures, Call /	Chapter 2:
		Return Sequence, Instructions for Procedures:	Instructions:
		JAL, JR, JALR.	Language of the
			Computer (2.7)
18	W 26/3	Parameter Passing, Stack Frame, Preserving	Chapter 2:
		Registers, Selection Sort Procedure.	Instructions:
			Language of the
			Computer (2.7)
	Th 27/3	Major Exam I	
19	S 29/3	Recursive Procedures: factorial. Unsigned	Chapter 2:
		Multiplication, Unsigned Multiplication	Instructions:
		Hardware.	Language of the
			Computer (2.7) &
			Chapter 3: Arithmetic
			for Computers (3.4)
20	M 31/3	Unsigned Multiplication Hardware, Signed	Chapter 3: Arithmetic
		Multiplication, Signed Multiplication Hardware.	for Computers (3.4)
21	W 2/4	Faster Multiplication Hardware, Carry Save	Chapter 3: Arithmetic
		Adders, Unsigned Division, Division Algorithm	for Computers (3.5)
		& Hardware, Signed Division. (Quiz#4)	
22	S 5/4	Faster Multiplication Hardware, Carry Save	Chapter 3: Arithmetic
		Adders, Unsigned Division. (Solution of Major	for Computers (3.5)
		Exam I).	
23	M 7/4	Division Algorithm & Hardware, Signed	Chapter 3: Arithmetic
		Division, Multiplication and Division in MIPS.	for Computers (3.5 &
		Integer to String Procedure, Floating-Point	3.6)
		Numbers.	

	T	T	1
24	W 9/4	Floating-Point Representation, IEEE 754 Floating-Point Standard, Normalized Floating Point Numbers, Biased Exponent Representation, Converting FP Decimal to Binary, Largest & Smallest Normalized Float.	Chapter 3: Arithmetic for Computers (3.6)
		Midterm Break	
25	S 19/4	Review of IEEE 754 Floating-Point Standard, Zero, Infinity, and NaN, Denormalized Numbers, Floating-Point Comparison, Floating Point Addition / Subtraction.	Chapter 3: Arithmetic for Computers (3.6)
26	M 21/4	Simple 6-bit Floating Point Example Floating Point Addition / Subtraction, Floating Point Adder Block Diagram. (Quiz#5)	Chapter 3: Arithmetic for Computers (3.6)
27	W 23/4	Floating Point Multiplication, Extra Bits to Maintain Precision, Guard Bit, Round and Sticky bits. IEEE 754 Rounding Modes.	
28	S 26/4	Illustration of Rounding Modes, Floating Point Subtraction Example, Advantages of IEEE 754 Standard, Floating Point Complexities, MIPS Floating-Point Instructions: Arithmetic Instructions, Load/Store Instructions, Data Movement Instructions, Convert Instructions, Compare and Branch Instructions, FP Data Directives, FP Syscall Services. Example: Area of a circle.	Chapter 3: Arithmetic for Computers (3.6)
29	M 28/4	What is Performance?, Response Time and Throughput, Definition of Performance, CPU Execution Time, Improving Performance. Clock Cycles per Instruction (CPI), Performance Equation.	Chapter 4: Assessing and Understanding Performance (4.1)
30	W 30/4	Factors Impacting Performance. (Quiz#6)	Chapter 4: Assessing and Understanding Performance (4.1, 4.2)
31	S 3/5	Clock Cycles per Instruction (CPI), Performance Equation, Determining the CPI, MIPS as a Performance Measure.	Chapter 4: Assessing and Understanding Performance (4.1, 4.2, 4.5)
32	M 5/5	MIPS as a Performance Measure, Drawbacks of MIPS, Amdahl's Law, Benchmarks, The SPEC CPU2000 Benchmarks, SPEC 2000 Ratings (Pentium III & 4), Performance and Power.	Chapter 4: Assessing and Understanding Performance (4.3-4.6)
33	W 7/5	Performance and Power, Energy Efficiency, Single Cycle Processor Design: Designing a Processor: Step-by-Step, Review of MIPS Instruction Formats, Register Transfer Level (RTL), Instructions Executed in Steps, Requirements of the Instruction Set.	Chapter 4: Assessing and Understanding Performance (4.3-4.6) Chapter 5: The

			Processor: Detenath
			Processor: Datapath & Control (5.1)
24	0.10/5	Components of the Datapath, Register Element,	Chapter 5: The
34	S 10/5	MIPS Register File, Tri-State Buffers. (Quiz#7)	Processor: Datapath
		Will 5 Register File, 111-State Duffers. (Quiz#1)	& Control (5.2-5.3)
25	N/ 10/5	Designing the MIPS Register File.	Chapter 5: The
35	M 12/5	Designing the will b register the.	Processor: Datapath
			& Control (5.2-5.3)
36	W 14/5	Building a Multifunction ALU.	Chapter 5: The
30	vv 14/3	Zanding a maintained on The.	Processor: Datapath
			& Control (5.2-5.3)
37	S 17/5	Instruction and Data Memories, Clocking	Chapter 5: The
31	31//3	Methodology, Determining the Clock Cycle,	Processor: Datapath
		Clock Skew, Instruction Fetching Datapath,	& Control (5.2-5.4)
		Datapath for R-type Instructions, Datapath for I-	(= 1= 2 - 1)
		type ALU, Instructions, Combining R-type & I-	
		type Datapaths. Controlling ALU Instructions,	
		Details of the Extender, Controlling the	
		Execution of Load & Store, Adding Jump and	
		Branch to Datapath.	
	S 17/5	Major Exam II	
38	M 19/5	Details of Next PC, Controlling the Execution of	Chapter 5: The
		Jump & Branch, Main Control.	Processor: Datapath
			& Control (5.3-5.4)
39	W 21/5	ALU Control, Drawbacks of Single Cycle	Chapter 5: The
		Processor. Multicycle Implementation, Single-	Processor: Datapath
		cycle vs. Multicycle Performance, Worst Case	& Control (5.3-5.4)
		Timing (Load Instruction), Pipelined Processor	Chapter 6: Enhancing
		Design: Pipelining Example.	Performance with
		Carial avacation various Disalinius Constant	Pipelining(6.1-6.2
40	S 24/5	Serial execution versus Pipelining, Synchronous	Chapter 6: Enhancing
		Pipeline, Pipeline Performance, Pipelined	Performance with
4.7	3.6.0.515	Datapath. Instruction Time Diagram Single Cycle vs.	Pipelining(6.1-6.3)
41	M 26/5	Instruction—Time Diagram, Single-Cycle vs. Pipelined Performance, Pipelined Control.	Chapter 6: Enhancing Performance with
		Pipeline Hazards, Structural Hazards, Resolving	Pipelining(6.1, 6.4)
		Structural Hazards, Data Hazards, Implementing	1 1pcmmig(0.1, 0.4)
		Forwarding, RAW Hazard Detection,	
		Forwarding Unit.	
42	W 28/5	Load Delay, Detecting RAW Hazard after Load,	Chapter 6: Enhancing
'+ ∠	VV 20/3	Hazard Detection and Stall Unit, Compiler	Performance with
		Scheduling. WAR Hazard, WAW Hazard,	Pipelining(6.1, 6.4,
		Control Hazards, Reducing the Delay of	6.5, 6.6)
		Branches, Branch Hazard Alternatives, Delayed	, ,
		Branch.	
43	S 31/5	Zero-Delayed Branch, Branch Target and	Chapter 6: Enhancing
		Prediction Buffer, Dynamic Branch Prediction,	Performance with

		Memory, Typical Memory Structure, Static RAM Storage Cell, Dynamic RAM Storage Cell, DRAM Refresh Cycles Trends in DRAM, Expanding the Data Bus Width, Increasing Memory Capacity by 2 ^k , Processor-Memory Performance Gap, The Need for a Memory Hierarchy. Typical Memory Hierarchy, Principle of Locality of Reference.	Chapter 7: Exploiting Memory Hierarchy (7.1) Appendix B.9 (CD)
44	M 2/6	Basics of Caches, Block Placement: Direct Mapped, Fully Associative Cache, Set- Associative Cache. Write Policy, Write Miss Policy, Write Buffer.	Chapter 7: Exploiting Memory Hierarchy (7.2, 7.3)
45	W 4/6	Replacement Policy, Cache Performance and Memory Stall Cycles: Hit Rate and Miss Rate, Memory Stall Cycles, CPU Time with Memory Stall Cycles, Designing Memory to Support Caches: Memory Interleaving, Improving Cache Performance: Average Memory Access Time, Small and Simple Caches, Larger Size and Higher Associativity, Larger Block Size.	Chapter 7: Exploiting Memory Hierarchy (7.2, 7.3, 7.5)