KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COLLEGE OF COMPUTER SCIENCES & ENGINEERING

ICS 233 Computer Architecture & Assembly Language Term 063 Lecture Breakdown

	Date	Topics	Ref.
1	U 1/7	Syllabus introduction. High-Level, Assembly-, and Machine-Languages, Advantages of High-Level Languages, Why Learn Assembly Language?	Chapter 1: Computer Abstractions and Technology
2	M 2/7	Assembly Language Programming Tools, Components of a Computer System, Memory Devices, Magnetic Disk Storage, Memory Hierarchy, Address, Data, and Control Bus	Chapter 1: Computer Abstractions and Technology
3	T 3/7	Processor: datapath, Control, Program Counter, Instruction Register, Fetch-Execute Cycle, Chip Manufacturing Process, Effect of Die Size on Yield, Technology Improvements, Programmer's View of a Computer System.	Chapter 1: Computer Abstractions and Technology
4	W 4/7	Positional Number Systems, Binary and Hexadecimal Numbers, Base Conversions, Integer Storage Sizes, Binary and Hexadecimal Addition, Signed Integers and 2's Complement Notation, Sign Extension	Chapter 3: Arithmetic for Computers (3.1- 3.3) & Chapter 3: Number Systems (Britton Book)
5	S 7/7	Two's Complement of a Hexadecimal, Binary & Hexadecimal Subtraction, Ranges of Signed Integers, Carry and Overflow, Character Storage ASCII Code.	Chapter 3: Arithmetic for Computers (3.1- 3.3) & Chapter 3: Number Systems (Britton Book)
6	U 8/7	Parity Bit. Instruction Set Architecture (ISA), Overview of the MIPS Processor, MIPS, General-Purpose Registers, MIPS Registers, Conventions, Instruction Formats, Instruction Categories.	Chapter 2: Instructions: Language of the Computer (2.1-2.5) & Chapter 1: The MIPS Architecture (Britton Book)
7	M 9/7	R-Type Arithmetic, Logical, and Shift Instructions, Integer Add /Subtract Instructions Logical Bitwise Instructions, Shift Instructions. Applications of logical instructions. Use of shift instructions in performing multiplication and division.	Chapter 2: Instructions: Language of the Computer (2.1-2.5)
8	T 10/7	I-Type Format, I-Type ALU Instructions, 32-bit Constants, J-Type Format, Conditional Branch Instructions, Set on Less Than Instructions,	Chapter 2: Instructions: Language of the

		Pseudo-Instructions.	Computer (2.6)
	0.14/5		Computer (2.0) Chapter 2:
9	S 14/7	Pseudo-Instructions, Jump, Branch, and SLT	Instructions:
		Instructions, Translating an IF Statement,	Language of the
		Compound Expression with AND, Compound	
		Expression with OR, Signed & Unsigned	Chapter 2: Algorithm
		Comparison. (QUIZ#1)	Chapter 2: Algorithm Development in
			Pseudocode &
			Appendix A (Britton Book)
10	U 15/7	Load and Store Instructions: Load and Store	Chapter 2:
		Word, Load and Store Byte and Halfword,	Instructions:
		Translating a WHILE Loop, Using Pointers to	Language of the
		Traverse Arrays, Copying a String, Summing an	Computer
		Integer Array, Addressing Modes, Branch /	(2.6, 2.8, 2.9)
		Jump Addressing Modes.	Chapter 2: Algorithm
			Development in
			Pseudocode (Britton
			Book)
11	M 16/7	Branch / Jump Addressing Modes, Jump and	Chapter 2:
		Branch Limits, Summary of RISC Design,	Instructions:
		Assembly Language Statements, Instructions,	Language of the
		Comments, Program Template, .DATA, .TEXT,	Computer (2.9)
		& .GLOBL Directives, Data Definition	Appendix A.9-A.10
		Statement, Data Directives, String Directives.	& Appendix A
			(Britton Book)
12	T 17/7	String Directives, Examples of Data Definitions,	Appendix A.9-A.10
		Memory Alignment, Byte Ordering and,	& Appendix A
		Endianness, System Calls, Reading and Printing	(Britton Book)
		an Integer, Reading and Printing a String,	, , ,
		Reading and Printing a Character, Sum of Three	
		Integers Program, Case, Conversion Program	
13	U 22/7	Procedures, Call / Return Sequence, Instructions	Chapter 2:
		for Procedures, Parameter Passing, Stack Frame,	Instructions:
		Preserving Registers, Selection Sort Procedure,	Language of the
		Recursive Procedures.	Computer (2.7)
	U 22/7	MAJOR EXAM I	
14	M 23/7	Unsigned Multiplication, Unsigned	Chapter 3: Arithmetic
		Multiplication Hardware, Signed Multiplication,	for Computers (3.4)
		Signed Multiplication Hardware, Faster	_
		Multiplication Hardware.	
15	T 24/7	Carry Save Adders, Unsigned Division,	Chapter 3: Arithmetic
		Division Algorithm & Hardware, Signed	for Computers (3.5)
		Division, Multiplication and Division in MIPS.	1
16	W 25/7	Integer to String Procedure, Floating-Point	Chapter 3: Arithmetic
		Numbers. (Solution of EXAM I)	for Computers (3.6)
17	S 28/7	Floating-Point Representation, IEEE 754	Chapter 3: Arithmetic
1/	5 20/1	Floating-Point Standard, Normalized Floating	for Computers (3.6)
			101 Computers (3.0)

	Т	T	
		Point Numbers, Biased Exponent Representation, Converting FP Decimal to	
		Binary, Largest & Smallest Normalized Float,	
		Zero, Infinity, and NaN, Denormalized	
		Numbers, Floating-Point Comparison, Floating	
		Point Addition.	
18	U 29/7	Floating Point Addition / Subtraction, Floating	Chapter 3: Arithmetic
10	0 2)11	Point Adder Block Diagram, Floating Point	for Computers (3.6)
		Multiplication, Extra Bits to Maintain Precision,	Tor Computers (5.0)
		Guard Bit.	
19	M 30/7	Guard Bit, Round and Sticky Bits, IEEE 754	Chapter 3: Arithmetic
		Rounding Modes, MIPS Floating-Point	for Computers (3.6)
		Instructions: Arithmetic Instructions, Load/Store	
		Instructions, Data Movement Instructions,	
		Convert Instructions, Compare and Branch	
		Instructions. (QUIZ#2)	
20	T 31/7	FP Data Directives, FP Syscall Services	Chapter 3: Arithmetic
		Examples: Area of a circle, Matrix	for Computers (3.6)
		Multiplication. What is Performance?, Response	& Chapter 4:
		Time and Throughput, Definition of Performance, CPU Execution Time, Improving	Assessing and
		Performance.	Understanding
			Performance (4.1)
21	S 4/8	Clock Cycles per Instruction (CPI), Performance	Chapter 4: Assessing
		Equation, Determining the CPI, MIPS as a	and Understanding
		Performance Measure, Drawbacks of MIPS,	Performance
		Amdahl's Law.	(4.1, 4.2, 4.5)
22	U 5/8	Amdahl's Law, Benchmarks, The SPEC	Chapter 4: Assessing
		CPU2000 Benchmarks, SPEC 2000 Ratings	and Understanding
		(Pentium III & 4), Performance and Power,	Performance
		Energy Efficiency, Single Cycle Processor	(4.3-4.6)
		Design: Designing a Processor: Step-by-Step,	Chapter 5: The
		Review of MIPS Instruction Formats, Register	Processor: Datapath
		Transfer Level (RTL), Instructions Executed in	& Control (5.1)
22	3.5.5.00	Steps, Requirements of the Instruction Set. Components of the Datapath, Register Element,	` '
23	M 6/8	MIPS Register File, Tri-State Buffers.	Chapter 5: The
		Will 5 Register The, 111-5tate Buriers.	Processor: Datapath
	—	Duilding a Multifunction ALII Instruction and	& Control (5.2-5.3)
24	T 7/8	Building a Multifunction ALU, Instruction and Data Memories, Clocking Methodology	Chapter 5: The
		Determining the Clock Cycle, Clock Skew,	Processor: Datapath
		Instruction Fetching Datapath, Datapath for R-	& Control (5.2-5.3)
		type Instructions, Datapath for I-type ALU,	
		Instructions, Combining R-type & I-type	
		Datapaths.	
25	U 12/8	Controlling ALU Instructions, Details of the	Chapter 5: The
23	0 12/0	Extender, Controlling the Execution of Load &	Processor: Datapath
		Store, Adding Jump and Branch to Datapath	& Control (5.3-5.4)
		Details of Next PC, Controlling the Execution of	

	<u> </u>		<u> </u>
		Jump & Branch, Main Control and ALU	
		Control, Drawbacks of Single Cycle Processor.	
26	M 13/8	Multicycle Implementation, Single-cycle vs. Multicycle Performance, Worst Case Timing (Load Instruction), Pipelined Processor Design: Pipelining Example, Serial execution versus Pipelining, Synchronous Pipeline, Pipeline	Chapter 5: The Processor: Datapath & Control (5.4) Chapter 6: Enhancing
		Performance, Pipelined Datapath, Instruction— Time Diagram, Single-Cycle vs. Pipelined Performance, Pipelined Control.	Performance with Pipelining(6.1-6.3)
	M 13/8	MAJOR EXAM II	
27	T 14/8	Pipeline Hazards, Structural Hazards, Resolving Structural Hazards, Data Hazards, Implementing Forwarding, RAW Hazard Detection, Forwarding Unit, Load Delay, Detecting RAW Hazard after Load, Hazard Detection and Stall Unit, Compiler Scheduling.	Chapter 6: Enhancing Performance with Pipelining(6.1, 6.4, 6.5)
28	W 15/8	WAR Hazard, WAW Hazard, Control Hazards, Reducing the Delay of Branches, Branch Hazard Alternatives, Delayed Branch, Zero-Delayed Branch, Branch Target and Prediction Buffer, Dynamic Branch Prediction, 2-bit Prediction Scheme.	Chapter 6: Enhancing Performance with Pipelining(6.1, 6.6)
29	S 18/8	Random Access Memory, Typical Memory Structure, Static RAM Storage Cell, Dynamic RAM Storage Cell, DRAM Refresh Cycles Trends in DRAM, Expanding the Data Bus Width, Increasing Memory Capacity by 2 ^k , Processor-Memory Performance Gap, The Need for a Memory Hierarchy.	Chapter 7: Exploiting Memory Hierarchy (7.1) Appendix B.9 (CD)
30	U 19/8	Typical Memory Hierarchy, Principle of Locality of Reference, Basics of Caches, Block Placement: Direct Mapped, Fully Associative Cache, Set-Associative Cache.	Chapter 7: Exploiting Memory Hierarchy (7.2, 7.3)
31	M 20/8	Set-Associative Cache, Write Policy, Write Miss Policy, Write Buffer, Replacement Policy, Cache Performance and Memory Stall Cycles: Hit Rate and Miss Rate, Memory Stall Cycles, CPU Time with Memory Stall Cycles, Designing Memory to Support Caches: Memory Interleaving, Improving Cache Performance: Average Memory Access Time, Small and Simple Caches, Larger Size and Higher Associativity, Larger Block Size.	Chapter 7: Exploiting Memory Hierarchy (7.2, 7.3, 7.5)