KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

ICS 233 Computer Architecture & Assembly Language

Term 142 Lecture Breakdown

Lec	Date	Topics	Ref.
#			
1	T 27/1	Assembly and Machine Language, Compiler and Assembler, Instructions and Machine Language, Instruction Fields, Advantages of High-Level Languages, Why Learn Assembly Language? Assembly vs. High-Level Languages, Assembly Language Programming	Chapter 1: Computer Abstractions and Technology 1.1-1.5
		Tools.	~
2	TH 29/1	Assembly Language Programming Tools, Assemble and Link Process, Components of a Computer System, Memory, Address Space. Address, Data, and Control Bus. Memory Devices: RAM, DRAM, SRAM, ROM. Magnetic Disk Storage, Processor-Memory Performance Gap.	Chapter 1: Computer Abstractions and Technology 1.1-1.5
3	U 1/2	Processor-Memory Performance Gap. Memory Hierarchy, Processor: Datapath, Control, Program Counter, Instruction Register, Fetch- Execute Cycle. Technology Improvements.	Chapter 1: Computer Abstractions and Technology 1.1-1.5
4	T 3/2	Positional Number Systems, Binary and Hexadecimal Numbers, Base Conversions. Integer Storage Sizes. Binary and Hexadecimal Addition.	
5	TH 5/2	Signed Integers and 2's Complement Notation, Sign Extension. Two's Complement of a Hexadecimal, Binary & Hexadecimal Subtraction, Ranges of Signed Integers. Carry and Overflow.	
6	U 8/2	Character representation, parity bit. Overview of the MIPS, Processor, MIPS, General- Purpose Registers, Conventions, Instruction Formats. Instruction Categories.	Chapter 2: Instructions: Language of the Computer (2.1-2.2)
7	T 10/2	Instruction Categories. R-Type Arithmetic, Logical, and Shift Instructions, Integer Add /Subtract Instructions. Logical Bitwise Instructions: AND, OR, XOR, NOR, Shift Instructions: sll, srl sra, sllv, srlv, srav. Use of	Chapter 2: Instructions: Language of the Computer (2.1-2.6)

		shift instructions in performing multiplication and division. (Quiz#1)	
8	TH 12/2	Use of shift instructions in performing	Chapter 2:
0	111 12/2	multiplication and division. I-Type Format, I-	Instructions:
		Type ALU Instructions, 32-bit Constants,	Language of the
		Applications of logical instructions. J-Type	Computer (2.1-2.7)
		Format.	
9	U 15/2	Conditional Branch Instructions, Set on Less	Chapter 2:
		Than Instructions, Pseudo-Instructions.	Instructions:
		Translating an IF Statement, Compound	Language of the
		Expression with AND.	Computer (2.1-2.7)
10	T 17/2	Compound Expression with OR, Signed &	Chapter 2:
		Unsigned Comparison. Load and Store	Instructions:
		Instructions: Load and Store Word, Load and	Language of the
		Store Byte and Halfword.	Computer (2.1-2.7)
11	TH 19/2	Translating a WHILE Loop. Using Pointers to	Chapter 2:
		Traverse Arrays. Copying a String, Summing	Instructions:
		an Integer Array.	Language of the
		Addressing Mades Dronch / Jump Addressing	Computer (2.1-2.7) 2.10
12	U 22/2	Addressing Modes, Branch / Jump Addressing Jump and Branch Limits, PC-Relative	
		Jump and Branch Limits, PC-Relative Addressing. Summary of RISC Design,	Appendix A.9-A.10
		Assembly Language Statements, Instructions,	
		Comments, Program Template. Data	
		Definition Statement, Data	
		Directives: .Byte, .Half, .Word, .Float, .double,	
		String Directives: Ascii, Asciiz, Space,	
		Examples of Data Definitions, Memory	
		Alignment.	
13	T 24/2	Byte Ordering, Big & Little Endians. System	Appendix A.9-A.10
10	1 2 1/ 2	Calls, Reading and Printing an Integer,	
		Reading and Printing a String, Reading and	
		Printing a Character. System Calls, Sum of	
		Three Integers Program. (Quiz#2)	
14	TH 26/2	Case Conversion Program. File operations.	Appendix A.9-A.10
		Review for Major Exam 1.	
	S 28/2	Major Exam I	
15	U 1/3	Procedures, Call / Return Sequence,	Chapter 2:
		Instructions for Procedures: JAL, JR, JALR.	Instructions:
		Parameter Passing, Stack Frame, Preserving	Language of the
		Registers.	Computer (2.8)
16	T 3/3	Parameter Passing, Stack Frame, Preserving	Chapter 2:
		Registers. Selection Sort Procedure.	Instructions:
			Language of the Computer (2.8)
	TH 5/3	Last Day for Dropping with W	
			Chart 2
17	TH 5/3	Selection Sort Procedure. Recursive	Chapter 3:
		Procedures: factorial. Unsigned Multiplication	Arithmetic for C_{omputers} (2.2)
		Hardware, Signed Multiplication.	Computers (3.3)

18	U 8/3	Signed Multiplication Hardware. Fast Multiplication, Unsigned Division. Division Algorithm & Hardware. Signed Division, Multiplication and Division in MIPS.	Chapter 3: Arithmetic for Computers (3.3- 3.4)
19	T 10/3	Integer to String Procedure. Floating-Point Numbers, Floating-Point Representation. IEEE 754 Floating-Point Standard, Normalized Floating Point Numbers, Biased Exponent Representation. Converting FP Decimal to Binary, Largest & Smallest Normalized Float, Zero, Infinity, and NaN, Denormalized Numbers. Floating-Point Comparison.	Chapter 3: Arithmetic for Computers (3.5)
20	TH 12/3	Simple 6-bit Floating Point Example. Floating Point Addition/Subtraction, Floating Point Adder Block Diagram.	Chapter 3: Arithmetic for Computers (3.5)
21	U 15/3	Floating Point Addition/Subtraction, Floating Point Adder Block Diagram. Floating Point Multiplication, Extra Bits to Maintain Precision, Guard Bit, Round and Sticky bits. IEEE 754 Rounding Modes.	Chapter 3: Arithmetic for Computers (3.5)
22	T 17/3	IEEE 754 Rounding Modes. MIPS Floating- Point Instructions: Arithmetic Instructions, Load/Store Instructions. (Quiz#3)	Chapter 3: Arithmetic for Computers (3.5)
23	TH 19/3	MIPS Floating-Point Instructions: Data Movement Instructions, Convert Instructions, Compare and Branch Instructions, FP Data Directives, FP Syscall Services. Example: Area of a circle, matrix multiplication.	Chapter 3: Arithmetic for Computers (3.5)
	20-28/3	MIDTERM VACATION	
24	U 29/3	Single Cycle Processor Design: Designing a Processor: Step-by-Step. Review of MIPS Instruction Formats, Register Transfer Level (RTL). Instructions Executed in Steps, Requirements of the Instruction Set. Components of the Datapath. Register Element, MIPS Register File, Tri-State Buffers. Designing the MIPS Register File.	4.1-4.3
25	T 31/3	Building a Multifunction ALU, Instruction and Data Memories, Clocking Methodology, Determining the Clock Cycle, Clock Skew.	4.1-4.3
26	TH 3/4	(Quiz#4)	
27	S 4/4	No Class	
28	U 5/4	No Class	
29	T 7/4	Instruction Fetching Datapath, Datapath for R- type Instructions. Datapath for I-type ALU, Instructions, Combining R-type & I-type Datapaths. Controlling ALU Instructions, Details of the Extender, Controlling the	4.1-4.3

38	T 28/4	Hazard Alternatives, Delayed Branch. Random Access Memory, Typical Memory	5.1-5.2
36 37	TH 23/4 U 26/4		4.8
35	T 21/4	Load Delay, Detecting RAW Hazard after Load, Hazard Detection and Stall Unit.	4.8
34	U 19/4	Instruction–Time Diagram, Single-Cycle vs. Pipelined Performance, Pipelined Control. Pipeline Hazards, Structural Hazards, Resolving Structural Hazards, Data Hazards. Implementing Forwarding, RAW Hazard Detection. Forwarding Unit.	4.6-4.8
	U 19/4	Major Exam II	4.6.1.2
		Benchmarks. Pipelined Processor Design: Pipelining Example. Serial execution versus Pipelining, Synchronous Pipeline, Pipeline Performance. Pipelined Datapath.	
32 33	T 14/4 TH 16/4	Determining the CPI. Amdahl's Law.Benchmarks,TheSPECCPU2000	1.6 1,6 & 4.5-4.6
		Performance Equation. Factors Impacting Performance.	1 4
		execution time. Response Time and Throughput, Definition of Performance, CPU Execution Time, Improving Performance. Clock Cycles per Instruction (CPI),	
31	U 12/4	Timing (Load Instruction).What is Performance? Factors affecting	1.6
30	TH 9/4 TH 9/4	Last Day for Dropping all Courses with WMain Control. ALU Control. Worst Case	4.1-4.4
		of Jump & Branch.	
		Execution of Load & Store. Adding Jump and Branch to Datapath. Controlling the Execution of Jump & Branch.	

42	TH 7/5	Replacement Policy, Cache Performance and	5.1-5.4
		Memory Stall Cycles: Hit Rate and Miss Rate,	
		Memory Stall Cycles, CPU Time with Memory	
		Stall Cycles. Improving Cache Performance:	
		Average Memory Access Time.	
43	U 10/5	Improving Cache Performance: Average	5.4
		Memory Access Time, Small and Simple	
		Caches, Larger Size and Higher Associativity,	
		Larger Block Size.	
44	T 12/5	Zero-Delayed Branch, Branch Target and	4.8
	_, •	Prediction Buffer (Quiz#6)	
45	TH 14/5	Dynamic Branch Prediction, 2-bit Prediction	4.8
		Scheme. Review for the final exam.	