
 Page 1 of 16

 August 23, 2007

COMPUTER ENGINEERING DEPARTMENT

ICS 233

COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Final Exam

Summer Semester (063)

Time: 7:30-10:30 AM

Student Name : _KEY___

Student ID. : __

Question Max Points Score

Q1 30

Q2 14

Q3 10

Q4 14

Q5 18

Q6 14

Total 100

Dr. Aiman El-Maleh

 Page 2 of 16

[30 Points]

(Q1) Consider the single-cycle datapath and control given below for the MIPS processor

implementing a subset of the instruction set:

(i) Show the control signals generated for the execution of the following

instructions by filling the table given below:

Op RegDst RegWrite ExtOp ALUSrc ALUOp Beq Bne J MemRead MemWrite MemtoReg

R-

type

1 = Rd 1 x 0=BusB R-type 0 0 0 0 0 0

Addi 0 = Rt 1 1=sign 1=Imm ADD 0 0 0 0 0 0

Andi 0 = Rt 1 0=zero 1=Imm AND 0 0 0 0 0 0

Lw 0 = Rt 1 1=sign 1=Imm ADD 0 0 0 1 0 1

Sw x 0 1=sign 1=Imm ADD 0 0 0 0 1 x

Beq x 0 x 0=BusB SUB 1 0 0 0 0 x

J x 0 x x x 0 0 1 0 0 x

 Page 3 of 16

The format of these instructions is given below for your reference:

Instruction Meaning Format

 add rd, rs, rt addition Op6 = 0 rs5 rt5 rd5 0 0x20

 addi rt, rs, imm16 add immediate 0x08 rs5 rt5 imm16

 andi rt, rs, imm16 and immediate 0x0c rs5 rt5 imm16

 lw rt, imm16(rs) load word 0x23 rs5 rt5 imm16

 sw rt, imm16(rs) store word 0x2b rs5 rt5 imm16

 beq rs, rt, label branch if equal 0x04 rs5 rt5 imm16

 j label jump 0x02 imm26

(ii) We wish to add the following instructions to the single-cycle datapath. Add

any necessary datapath and control signals needed for the implementation of

these instructions. Show only the modified and added components to the

datapath. Show the values of the control signals to control the execution of

each instruction.

a. jal

Instruction Meaning Format

 jal label $31=PC+4, jump op6 = 3 imm26

This instruction is similar to the jump instruction (J) with the difference that

register $31 should be loaded with the incremented PC value. Thus, we need

to add a MUX at the input of RW input to the register file to select the value

31 when executing this instruction. We also need to add a MUX at the input of

BusW in the register file to select the incremented PC value to be loaded

instead of the value coming from the output of the data memory MUX. In

addition, we need to make changes to the NextPC block to perform the same

operation needed by the J instruction for Jal instruction. These changes are

shown below.

The values of the control signals to control the execution of this instruction are

given below:

Op RegDst RegWrite ExtOp ALUSrc ALUOp Jal Beq Bne J MemRead MemWrite MemtoReg

jal x 1 x x x 1 0 0 0 0 0 x

 Page 4 of 16

b. blez

Instruction Meaning Format

 blez rs, label Branch if (rs<=0) Op6 = 1 rs5 0 imm16

Since the first source operand specified by RS comes on BusA and the second

operand which is the Zero register specified by the RT filed comes on BusB,

all we need is to get the operand on BusA to appear at the output of the ALU

as we just need to check the sign bit (i.e. most significant bit of the result).

Performing an addition, subtraction, xoring, oring operations will work. Let us

assume that we will do an ALU addition operation.

If the sign bit is 1, then it is less than zero but if it is zero, then we also need to

check if the result is equal to zero. Thus, the changes needed to be done are in

the NextPC block as shown below.

 Page 5 of 16

The values of the control signals to control the execution of this

instruction are given below:

Op RegDst RegWrite ExtOp ALUSrc ALUOp Blez Beq Bne J MemRead MemWrite MemtoReg

blez x 0 x 0= BusB ADD 1 0 0 0 0 0 x

(iii) Assume that the propagation delays for the major components used in the

datapath are as follows:

 Instruction and data memories: 200 ps

 ALU and adders: 180 ps

 Register file access (read or write): 150 ps

 Main control: 50 ps

 ALU control: 30 ps

Ignore the delays in the multiplexers, PC access, extension logic, and wires.

What is the cycle time for the single-cycle datapath given above?

Cycle Time = IM + max(Main Control+ALU Control, Register Reading) +

ALU + DM + Register Writing

= 200 ps + 150 ps + 180 ps + 200 + 150 ps = 880 ps

Beq

Bne

J

Zero

PCSrc

Zero Sign

Blez

 Page 6 of 16

(iv) Suppose that we want to add a variant of the lw (load word) instruction to the

single-cycle datapath, which increments the index register by 4 after loading

a word from memory. This instruction lw_inc $rt, imm16($rs) corresponds to

the following two instructions:

lw $rt, imm16($rs)

addi $rs, $rs, 4

This instruction would be useful in array manipulation.

a. Add any necessary datapath and control signals needed for the

implementation of this instruction. Show only the modified and added

components to the datapath. If there are any changes needed to the

register file, just indicate the required changes and add the required signals

without showing its implementation. Show the values of the control

signals to control the execution of this instruction.

The only difference between this instruction and the lw instruction is that

we need to increment the $rs register by 4 and update its value. This

requires that we have a register file that has two write ports as we need to

write to $rs the incremented value and also write the loaded value to $rt

register. We also need an additional adder to increment the $rs register by

4 since the ALU is used by the instruction for address calculations. The

required changes are shown below:

The values of the control signals to control the execution of this instruction are

given below:

Op RegDst RegWrite1 RegWrite2 ExtOp ALUSrc ALUOp Beq Bne J MemRead MemWrite MemtoReg

lw_inc 0 = Rt 1 1 1=sign 1=Imm ADD 0 0 0 1 0 1

 Page 7 of 16

b. Consider the following code for adding the words of an n-word

Array. The procedure receives the array address in $a0 and the number of

words in $a1 and returns the sum in $v0.

AddArray:

 xor $v0, $v0, $v0 # Array sum=0

Next:

 lw $t0, ($a0)

 addi $a0, $a0, 4

 add $v0, $v0, $t0

 addi $a1, $a1, -1

 bne $a1, $zero, Next

 jr $ra

Determine the instruction count as a function of the Array size, n. What

will be the instruction count if the new instruction lw_inc is utilized in this

code. Assuming that due to the implementation of this instruction, the

clock cycle is increased by 5%. What will be the maximum speedup in

executing the procedure with the lw_inc instruction?

IC = 2 + 5*n

Instruction count after using lw_inc instruction will be = 2 + 4*n

Speedup = (2+5*n) / (2+4*n)*1.05

Maximum speedup = 5/4*1.05 (for large n)

 = 1.19

 Page 8 of 16

[14 Points]

(Q2) Consider the code given below:

lw $2, ($1)

addi $2, $2, 1

sw $2, ($1)

addi $1, $1, 4

(i) Identify all the RAW data dependencies in the above code. Which

dependencies are data hazards that will be resolved by forwarding? Which

dependencies are data hazards that will cause a stall?

RAW dependencies:

lw $2, ($1) and addi $2, $2, 1 (stall 1 cycle & forwarding)

addi $2, $2, 1 and sw $2, ($1) (forwarding)

(ii) Using a multiple-clock-cycle graphical representation, show the instruction

execution across the pipeline including forwarding paths and stalled cycles if

any. How many clock cycles will be needed to execute the instructions?

Number of clock cycles = 9.

 Page 9 of 16

(iii) Can you modify the instructions without changing their execution behavior

while reducing the number of clock cycles needed for their execution? What

will be the speedup if any?

Yes, the program sequence can be written as follows without changing its

execution behavior while eliminating the stall cycle and reducing the number

of clock cycles from 9 to 8.

lw $2, ($1)

addi $1, $1, 4

addi $2, $2, 1

sw $2, -4($1)

Speedup = 9 / 8 = 1.125.

 Page 10 of 16

[10

Poi

nts]

(Q3) Consider the instruction sequence given below:

lw $t1, ($s0)

sw $t1, ($s1)

We can forward that data of lw instruction to the next sw instruction as required by the

above example. However, such forwarding is not supported by the design given below.

(i) Show the required changes in the datapath and forwarding unit to support

such forwarding.

We need a multiplexer at the B input in the EX/MEM register as shown

below. The data loaded from the Data Memory should be fed back at the input

of the multiplexer. A control signal, ForwardC, is needed to control the

selection of this multiplexer. The Forwarding unit in the ID stage will generate

the ForwardC signal and pipeline it, after detecting the dependency between a

SW and a previous LW instruction.

 Page 11 of 16

(ii) Write the condition for generating the forwarding control signal. Identify the

pipeline registers and control signals used by the sw and lw instructions when

writing the condition.

ForwardC=0 means no forwarding,

ForwardC=1 means forward the load data from the MEM stage.

Condition for generating ForwardC:

If (ID/EX.MemRead == 1 and MemWrite == 1 and

 ID/EX.Rw == IF/ID.Rt and ID/EX.RW != 0) ForwardC = 1

Else ForwardC = 0.

 Page 12 of 16

 [14 Points]

(Q4) Given that TABLE is defined as: TABLE: .ascii "Salam Alaikom". The code given

below counts the number of characters 'A' or 'a' found in TABLE and stores the count in

register $t0.

xor $t0, $t0, $t0

li $t1, 13

la $t2, TABLE

addi $t2, $t2, -1

Next: beq $t1, $zero, ENL

addi $t2, $t2, 1

 lbu $t3, ($t2)

 ori $t3, $t3, 0x20

li $t4, 'a'

addi $t1, $t1, -1

bne $t3, $t4, Next

addi $t0, $t0, 1

j Next

 ENL:

(i) Show the outcomes of each of the conditional branch instructions due to the

execution of the program (T for taken, N for not taken).

Conditional Branch Branch Outcome

Beq $t1, $zero, ENL N N N N N N N N N N N N N T

Bne $t3, $t4, Next T N T N T T N T N T T T T

(ii) List the predictions and the accuracies for each of the following dynamic

branch predictions schemes:

a. 1-bit prediction, initialized to predict not taken.

Conditional Branch Branch Prediction

Beq $t1, $zero, ENL N N N N N N N N N N N N N N

Bne $t3, $t4, Next N T N T N T T N T N T T T

Wrong=1+9=10 Right=13+4=17

Accuracy = 100% * 17/27 = 62.96%

b. 2-bit predictor, initialized to weakly predict not taken.

The 2-bit predictor used is as follows:

 Page 13 of 16

Conditional Branch Branch Prediction

Beq $t1, $zero, ENL N N N N N N N N N N N N N N

Bne $t3, $t4, Next N T T T T T T T T T T T T

Wrong=1+5=6 Right=13+8=21

Accuracy = 100% * 21/27 = 77.78%

 Page 14 of 16

 [18 Points]

(Q5) Consider the following series of address references given as 16-bit addresses:

0x0000, 0x0001, 0x0002, 0x0040, 0x0041, 0x0000, 0x0001, 0x0002, 0x0040,

0x0041, 0x0042, 0x0062, 0x0063, 0x0043, 0x0045, 0x0046.

(i) Assuming a 32-byte cache organized as a direct-mapped cache with 4-byte

block size, determine the number of bits in the offset, index and tag fields.

Starting with an empty cache, show the offset, index and tag for each address

reference in the list and indicate whether it is a hit or a miss. What is the miss

ratio for this sequence on this cache?

Offset = 2 bits Index = 3 bits Tag=16-5=11 bits

Address Tag Index Offset Hit/Miss

0x0000 0x000 000 00 M

0x0001 0x000 000 01 H

0x0002 0x000 000 10 H

0x0040 0x002 000 00 M

0x0041 0x002 000 01 H

0x0000 0x000 000 00 M

0x0001 0x000 000 01 H

0x0002 0x000 000 10 H

0x0040 0x002 000 00 M

0x0041 0x002 000 01 H

0x0042 0x002 000 10 H

0x0062 0x003 000 10 M

0x0063 0x003 000 11 H

0x0043 0x002 000 11 M

0x0045 0x002 001 01 M

0x0046 0x002 001 10 H

 Miss ratio = 7 / 16 = 0.4375.

 Page 15 of 16

(ii) Assuming a 32-byte cache organized as a two-way set associative cache with

4-byte block size, determine the number of bits in the offset, index and tag

fields. Starting with an empty cache, show the offset, index and tag for each

address reference in the list and indicate whether it is a hit or a miss. Assume

that a FIFO replacement policy is used. What is the miss ratio for this

sequence on this cache?

Offset = 2 bits Index = 2 bits Tag=16-4=12 bits

Address Tag Index Offset Hit/Miss

0x0000 0x000 00 00 M

0x0001 0x000 00 01 H

0x0002 0x000 00 02 H

0x0040 0x004 00 00 M

0x0041 0x004 00 01 H

0x0000 0x000 00 00 H

0x0001 0x000 00 01 H

0x0002 0x000 00 10 H

0x0040 0x004 00 00 H

0x0041 0x004 00 01 H

0x0042 0x004 00 10 H

0x0062 0x006 00 10 M

0x0063 0x006 00 11 H

0x0043 0x004 00 11 H

0x0045 0x004 01 01 M

0x0046 0x004 01 10 H

Miss ratio = 4 / 16 = 0.25.

 Page 16 of 16

 [14 Points]

(Q6) A processor runs at 2 GHz and has a CPI=1.5 for a perfect cache (i.e. without including

the stall cycles due to cache misses). Assume that load and store instructions are 20% of

the instructions. The processor has an I-cache with a 3% miss rate and a D-cache with

5% miss rate. The hit time is 1 clock cycle. Assume that the time required to transfer a

block of data from the RAM to the cache, i.e. miss penalty, is 50 ns.

(i) What is the average memory access time for instruction access in clock

cycles?

Miss penalty in clock cycles = 50 * 10-9 * 2 * 109 = 100

AMAT = hit time + miss rate * miss penalty = 1 + 0.03 * 100 = 4

(ii) What is the average memory access time for data access in clock cycles?

AMAT = 1 + 0.05 * 100 = 6

(iii) What is the number of stall cycles per instruction and the overall CPI?

Number of stall cycles per instruction = 1 * 0.03 * 100 + 0.2 * 0.05 * 100 = 4

Overall CPI = 1.5 + 4 = 5.5

(iv) A new technology is proposed that can make the processor run at 4 GHz. The

only impact of this technology is that the cache size has to be decreased to

keep a hit time of one clock cycle increasing the I-cache miss rate to 4% and

the D-cache miss rate to 6%. Assume that the time required to transfer a block

of data from the RAM to the cache is still 50 ns. Will the processor be faster

using the new technology? What do you suggest to increase the speedup using

the new technology?

Miss penalty in clock cycles = 50 * 10-9 * 4 * 109 = 200

Number of stall cycles per instruction = 0.04 * 200 + 0.2 * 0.06 * 200=8+2.4=

10.4

New CPI = 1.5 + 10.4 = 11.9

Speedup = 5.5 * 4 * 109 /11.9 * 2 * 109 = 0.924

Thus, the processor with the new technology will not be faster.

To increase the speedup, we need to reduce the miss penalty. This can be done

using a second level cache and also using memory interleaving in transferring

the data between the RAM and cache.

